CONTENTS

TOPIC OF INTEREST - “CARDIOLOGY”

Pediatric electrocardiogram - Easy steps to analyse
- Anita Khalil 219

Congestive cardiac failure - Current concepts in management
- Smita Mishra 231

Congenital heart defects - Nonsurgical management
- Snehal Kulkarni, Tanuja Karande 245

Cardiogenic shock
- Arpita Chattopadhyay, Rakesh Lodha 250

Extra corporeal membrane oxygenation
- Rajakumar PS 257

Acute myocarditis and cardiomyopathy
- Zulfikar Ahamed M 263

Approach to management of arrhythmias in children
- Gnanasambandam S, Elamaran C 273

Cardiovascular issues in systemic conditions
- Shakuntala Prabhu, Sumitra Venkatesh 284

Pediatric pulmonary hypertension - Recent management guidelines
- Rani Gera, Smita Ramachandran 290

GENERAL ARTICLE

Disaster related injuries - Pediatric perspective
- Vinod H Ratageri, Shilpa C 294

Journal Office and address for communications: Dr. N.C.Gowrishankar, Editor-in-Chief, Indian Journal of Practical Pediatrics, 1A, Block II, Krsna Apartments, 50, Halls Road, Egmore, Chennai - 600 008. Tamil Nadu, India. Tel.No. : 044-28190032 E.mail : ijpp_iap@rediffmail.com
FOR YOUR KIND ATTENTION

* The views expressed by the authors do not necessarily reflect those of the sponsor or publisher. Although every care has been taken to ensure technical accuracy, no responsibility is accepted for errors or omissions.

* The claims of the manufacturers and efficacy of the products advertised in the journal are the responsibility of the advertiser. The journal does not own any responsibility for the guarantee of the products advertised.

* Part or whole of the material published in this issue may be reproduced with the note "Acknowledgement" to "Indian Journal of Practical Pediatrics" without prior permission.

- Editorial Board

Published by Dr. N.C. Gowrishankar, Editor-in-Chief, IJPP, on behalf of Indian Academy of Pediatrics, from 1A, Block II, Krsna Apartments, 50, Halls Road, Egmore, Chennai - 600 008. Tamil Nadu, India and printed by Mr. D. Ramanathan, at Alamu Printing Works, 9, Iyyah Street, Royapettah, Chennai-14.
INSTRUCTIONS TO AUTHORS

General
Print the manuscript on one side of standard size A4, white bond paper, with margins of at least 2.5 cm (1") in double space typescript on each side. Use American English using Times New Roman font 12 size. Submit four complete sets of the manuscript.
They are considered for publication on the understanding that they are contributed to this journal solely.
All pages are numbered at the top of the right corner, beginning with the title page.
All manuscripts should be sent to: The Editor-in-Chief, Indian Journal of Practical Pediatrics

Manuscript
1st Page –
Title
Name of the author and affiliation
Institution
Address for correspondence (Email, Phone, Fax if any)
Word count
No. of figures (colour / black and white)
No. of references
Authors contribution

2nd Page –
Abstract (unstructured, not exceeding 100 words) with key words (not exceeding 4)

3rd Page –
Acknowledgement
Points to remember (not more than 5 points)
Text
References
Tables
Legends
Figures – should be good quality, 4 copies black & white / colour,*
(4 x 6 inches – Maxi size) Glossy print
* Each colour image will be charged Rs. 1,000./- separately, with effect from January 2006 (Except for invited articles).

Text
Only generic names should be used
Measurements must be in metric units with System International (SI) Equivalents given in parentheses.

References
Recent and relevant references only
Strictly adhere to Vancouver style
Should be identified in the text by Arabic numerals as superscript.
Type double-space on separate sheets and number consecutively as they appear in the text.
Articles without references / defective references will entail rejection of article.
Tables
Numbered with Roman numerals and typed on separate sheets.
Title should be centered above the table and explanatory notes below the table.

Figures and legends
Unmounted and with figure number, first author’s name and top location indicated on the back of each figure.
Legends typed double-space on separate sheet. No title on figure.
All manuscripts, which are rejected will not be returned to author. Those submitting articles should therefore ensure that they retain at least one copy and the illustration, if any.

Article Categories

Review article
Article should be informative covering the recent and practical aspects in that field. Main articles can be in 1500 – 2000 words with 12 – 15 recent references and abstract not exceeding 100 words.

Case report (covering practical importance)
250 – 600 words, 8 – 10 recent references

Clinical spotters section
150 – 200 words write up
With 1 or 2 images of clinically recognizable condition
(of which one could be in the form of clinical photograph / specimen photograph / investigation)

Letters to the Editor
200 – 250 words pertaining to the articles published in the journal or practical viewpoints with scientific backing and appropriate references in Vancouver style.

Check List
Covering letter by corresponding author
Declaration (as enclosed) signed by all authors **
Manuscript (4 copies)
Accompanied by a copy in CD / or submit as an email attachment in addition to hard copy.

Failing to comply with the requirement at the time of submission would lead to the rejection of the article.

Author’s contribution / Authorship Criteria
All persons designated as authors should qualify for the authorship. Authorship credit should be based on substantial contributions to i) concept and design, or collection of data, or analysis and interpretation of data; ii) drafting the article or revising it critically for important intellectual content; and iii) final approval of the version to be published. All conditions 1, 2 and 3 must be met. Participation solely in the collection of data does not justify authorship and can be mentioned in the acknowledgement if wanted.

Declaration by authors
I/We certify that the manuscript titled ‘……………………………….’ represents valid work and that neither this manuscript nor one with substantially similar content under my/our authorship has been published or is being considered for publication elsewhere. The author(s) undersigned hereby transfer(s), assign(s), or otherwise convey(s) all copyright ownership, including any and all rights incidental thereto, exclusively to the Indian Journal of Practical Pediatrics, in the event that such work is published in Indian Journal of Practical Pediatrics. I / we assume full responsibility for any infringement of copyright or plagiarism.

Authors’ name(s) in order of appearance in the manuscript Signatures (date)

Selection procedures
All articles including invited articles will be peer reviewed by two masked reviewers. The decision of the Editorial Board based on the reviewer’s comments is final. All manuscripts, which are rejected will not be returned to author. Those submitting articles should therefore ensure that they retain at least one copy and the illustration, if any.
PEDIATRIC ELECTROCARDIOGRAM - EASY STEPS TO ANALYSE

*Anita Khalil

Abstract: With the development of pediatric emergency, pediatric and neonatal intensive care units, the need for understanding ECG has tremendously increased. Many critical derangements like arrhythmia and electrolyte disturbances have to be recognized and resolved in time without any delay. ECG rhythm plays a vital role in resuscitating a child in cardiac arrest. It also has a small but important role in the initial diagnosis and management of conditions like myocarditis and scorpion sting causing myocardial involvement. A pediatrician working in acute care areas should be familiar with ECG rhythm strip, as pediatric cardiology consultation may not be available at all times and places. Hence, ECG interpretation adds strength to the skills of pediatrician.

Keywords: Electrocardiogram, Children.

An electrocardiogram (ECG) is an investigation which records changes in the electrical activity of the heart and the information provided by the ECG is not readily obtained by any other method. ECG plays an important role in arrhythmia detection and management. It supplements the information required for diagnosis along with clinical examination and chest radiography.

Cardiac conduction system (Fig.1)

Specialized conducting tissues in heart are sinoatrial node and atrio-ventricular node.

a) Sinoatrial (SA) node - the pacemaker, which is a cluster of automatic cells near the junction of superior vena cava (SVC) and right atrium (RA). The tissue exhibits automaticity, and the rate of impulse generation is fastest in SA node, which normally dictates the rate and rhythm of heart beat. SA node is influenced by vagus (cardio-inhibiting) and sympathetic (cardio-stimulating) nerves.

b) Atrio-ventricular (AV) node - situated in anteromedial portion of RA, anterior to coronary sinus. The impulse generated in SA node, spreads throughout both the atria and to AV node from where it passes via bundle of His to supply both ventricles through the Purkinje fibers.

Basics in electrocardiogram

ECG is made up of 12 different leads giving views obtained from different directions or leads. There are six standard limb leads (I, II, III, aVL, aVR, aVF) and six chest leads (V1 to V6). (Fig.2a and b).

Fig. 1. Normal conduction pathway

Fig.2a. Standard limb leads

Fig.2b. Chest leads

(Source: John R. Hampton. What the ECG is about? In: The ECG made easy. 8th edn, Churchill Livingstone Elsevier, London 2013: pp10-11.)
Components of a normal ECG complex: A single ECG complex represents the electrical activity which occurs in one cardiac cycle and recorded in the ECG paper. It is made up of five waves (P,Q,R,S,T) and sometimes U (Fig.3a).

The various intervals and segments are shown in Fig.3b.

P-R interval indicates the time taken for the depolarization wave to pass from SA node, through atria and AV node and finally to the ventricular muscle. PR interval is the interval from the beginning of the P wave to the beginning of the QRS complex and is normally between 0.12 sec to 0.20 sec (Fig.5).

QRS complex

By convention, the first deflection of QRS complex is downward - Q wave. This is followed by an upward deflection - R wave and the downward deflection following R wave - S wave. These waves are due to the depolarization of the right and left ventricles. Fig.6. shows the varieties of QRS complex.

ST segment

It is measured from end of S wave to the beginning of T wave. It is the transient period when electrical current passes through the myocardium (Fig.7).
T wave

It represents the repolarization (recharging) of ventricular myocardium. QT interval: measures total time for activation of the ventricles and recovery to normal resting state (Fig.8).

U wave

The origin is uncertain, but may represent repolarization of interventricular septum or slow repolarization of ventricles (Fig.3a).

Stepwise interpretation of ECG

After ensuring the name age, gender, time of recording, check whether standardization curve is appropriate at 10 mms (10 small squares). ECG should be interpreted systematically in a stepwise fashion (Box 1).

Heart rate

Measurement of heart rate and identification of cardiac rhythm go hand in hand, as many abnormalities of heart rate result from arrhythmias. When one measures the heart rate, it normally means ventricular rate, which corresponds to patient’s pulse (Table I). Depolarization of ventricles produces the QRS complex in the ECG, and hence it is the rate of QRS complex that needs to be measured to determine the heart rate.

To measure heart rate: The ECG is recorded at standard paper speed of 25mm/second. Time is plotted in the X axis and voltage is recorded in the y axis. At this speed one should be aware that one minute ECG tracing covers 300 large squares and 1500 small squares. Hence each second there are five large squares, so one large square is equivalent to 0.2 secs and each small square is representing 0.04 seconds. If the rhythm is regular the number of large squares between 2 consecutive R waves is counted e.g. if there are 4 large squares between each R waves then the heart rate is 300 divided by number of large squares is 300/4 = 75. Alternately if small squares between two consecutive R waves are counted then the heart rate is 1500 divided by number of small squares which would give accurate heart rate. Normal heart rate varies with age.

Rhythm

Sinus rhythm implies the normal sequence of conduction originating in SA node, proceeding to ventricles via A-V node and bundle of His to Purkinje system. P wave precedes each QRS complex with regular P-R interval. P wave is better seen either in LII or V1. During inspiration, the heart rate increases, whereas during expiration it decreases. This variation is known as sinus arrhythmia. Here RR interval is varying, but PR interval is constant and P wave configuration is similar in all the complexes in the same lead. The exact relationship of PQRS complex, T waves and PR interval with shape of QRS complex has to be analyzed to indicate the type of cardiac arrhythmia.

Axis

The flow of electrical current through the heart normally passes along a well defined pathway. The QRS
axis is therefore conventionally referred to as the angle measured in degrees of the direction of electrical current passing through the ventricles. The angle from which each lead looks at the heart is represented by a hexaxial diagram which usually represents the angle from which each limb lead views the heart (Fig.9).

Interpretation of QRS axis

The information from limb leads is used to work out QRS axis in the frontal plane.

- **Lead I** - If QRS complex is positive, then axis is between -90° to +90°. Thus, predominantly positive QRS complex in Lead I rules out right axis deviation (axis beyond +90°) but does not exclude left axis deviation i.e. axis less than -30°.

- **Lead II** - If QRS complex is positive, then axis is between -30° to +150°. Thus predominantly positive QRS complex in lead II rules out left axis deviation (axis less than -30°) but does not exclude right axis deviation i.e. axis beyond +90°.

By looking at the QRS complex in lead I and lead II, the following interpretations can be made

(a) Positive QRS complex in both leads I and II - normal axis (- 30° to + 90°)

(b) Positive QRS in lead I and negative QRS in lead II - left axis deviation (- 30° to -90°)

(c) Negative QRS complex in lead I and positive QRS in lead II - right axis deviation (+ 90° to ± 180°)

(d) Negative QRS in lead I and II - extreme right axis deviation (- 90° to ± 180°)

Table I. Pulse rate at rest

<table>
<thead>
<tr>
<th>Age</th>
<th>Lower Limits of Normal</th>
<th>Average</th>
<th>Upper Limits of Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn</td>
<td>70/min</td>
<td>125/min</td>
<td>190/min</td>
</tr>
<tr>
<td>1–11 mo</td>
<td>80</td>
<td>120</td>
<td>160</td>
</tr>
<tr>
<td>2 yr</td>
<td>80</td>
<td>110</td>
<td>130</td>
</tr>
<tr>
<td>4 yr</td>
<td>80</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>6 yr</td>
<td>75</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>8 yr</td>
<td>70</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>10 yr</td>
<td>70</td>
<td>90</td>
<td>110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GIRLS</th>
<th>BOYS</th>
<th>GIRLS</th>
<th>BOYS</th>
<th>GIRLS</th>
<th>BOYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 yr</td>
<td>70</td>
<td>65</td>
<td>90</td>
<td>85</td>
<td>110</td>
</tr>
<tr>
<td>14 yr</td>
<td>65</td>
<td>60</td>
<td>85</td>
<td>80</td>
<td>105</td>
</tr>
<tr>
<td>16 yr</td>
<td>60</td>
<td>55</td>
<td>80</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>18 yr</td>
<td>55</td>
<td>50</td>
<td>75</td>
<td>70</td>
<td>95</td>
</tr>
</tbody>
</table>

Newborn - ECG

The electrocardiogram of a newborn gives the picture of right axis deviation with right ventricular hypertrophy (RVH) due to increased pressure in the right side of heart (Fig.10). Normal heart rate at birth is between 120-180/minute. Right axis deviation of mean QRS complex at birth (+125° to +180°) becomes normal by 1 year of age. R wave axis is positive in lead I and aVF. In premature babies less than 28 weeks gestation the chest leads show LV dominance and QRS axis is either normal or leftward.

Common electrocardiographic abnormalities

P wave

Common abnormalities can be due to right or left atrial enlargement (Fig.11a). In right atrial enlargement, tall and peaked P wave (P “pulmonale”) is seen where P wave amplitude is more than 2.5 mms with a normal P wave duration and is best seen in Lead II. Tall peaked P waves are seen in tricuspid atresia, pulmonary atresia with intact ventricular septum and severe pulmonary stenosis. In left atrial enlargement, P wave duration is prolonged ie >110 ms (>2.5 small squares in horizontal axis) and is inverted in V1. It is usually biphasic in L II and V1 (P “mitrale”) (Fig.11b). It is commonly seen in mitral stenosis, post-tricuspid shunts (VSD, PDA, A-P window).

QRS complex

QRS complex can show evidence of right, left or biventricular hypertrophy. In right ventricular hypertrophy (RVH) R/S ratio >1 in, V1, V2 and V4R with upright T wave in right precordial leads, right bundle branch block (RBBB), right axis deviation [(+135°) (except in newborn)] and Q wave (QR) in right precordial leads (Fig.12).

Right ventricular hypertrophy (RVH) due to pressure overload is shown by tall 'R' waves in aVR and right sided chest leads as in pulmonic stenosis while volume overload, RSR' pattern (right bundle branch block) as in atrial septal defect and in addition prolonged P-R interval may be seen because of interatrial conduction delay.

Left ventricular hypertrophy (LVH) is shown by tall 'R' waves in V5 and V6 and deep 'S' waves in V1.
ST depression and T wave inversion in V5 and V6 are indicative of pressure overload as in aortic stenosis and coarctation of aorta. But in volume overload prominent q waves and minimal ST segment elevation with upward concavity (Fig.13a and b). Left ventricular volume overload is indicated by tall 'R' waves in V5 and V6 as in ventricular septal defect and patent ductus arteriosus (Fig.13b). In a newborn left axis deviation (LAD) (< +60°) and absence of RV dominance indicate LVH.

In combined ventricular hypertrophy criteria of RVH plus LVH, or criteria of RVH with left atrial enlargement or criteria of LVH with right axis deviation are seen (Table II).

Table II. Features of RV and LV hypertrophy

<table>
<thead>
<tr>
<th>RV hypertrophy</th>
<th>LV hypertrophy</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least 2 of these changes should be present</td>
<td>• Deep Q wave in left precordial leads</td>
</tr>
<tr>
<td>• qR pattern in right ventricular surface leads</td>
<td>• Increased voltage of S wave in V3R and V1 or R wave in V6-V7, or both</td>
</tr>
<tr>
<td>• Positive T wave in leads V3R-V4R and V1-V3 between the ages of 6 days and 6 yr</td>
<td>• Tall R waves, large Q wave and normal T waves over left precordium - diastolic overload</td>
</tr>
<tr>
<td>• Monophasic R wave in V3R, V4R, or V1</td>
<td>• Depression of ST segments and inversion of T waves in left precordial leads (V3, V6, and V7) - left ventricular strain pattern</td>
</tr>
<tr>
<td>• rsR2 pattern in right precordial leads with 2nd R wave taller than initial one</td>
<td></td>
</tr>
<tr>
<td>• Age-corrected increased voltage of R wave in leads V3R-V4R or the S wave in leads V6-V7, or both</td>
<td></td>
</tr>
<tr>
<td>• Marked right axis deviation (>120 degrees in patients beyond newborn period)</td>
<td></td>
</tr>
<tr>
<td>• Complete reversal of normal adult precordial RS pattern</td>
<td></td>
</tr>
</tbody>
</table>

Cardiac arrhythmias are rhythm disturbances due to abnormal impulse generation or abnormal impulse conduction block or delay, functional or fixed re-entry circuit (Fig.16).

Arrhythmias can be classified based on the following characteristics (Box 2). Arrhythmias can also be broadly classified into either tachyarrhythmias or bradyarrhythmias (Table III).

Tachyarrhythmias

All the rhythms that originate in sino-atrial (SA) node is sinus rhythm and when they are faster than normal, they are tachyarrhythmias. Tachyarrhythmias may be further classified into sinus tachycardia, premature ventricular contractions (PVCs), supraventricular tachycardia (SVT), atrial flutter, atrial fibrillation, ventricular tachycardia and ventricular fibrillation. In ventricular arrhythmia, QRS duration will be prolonged ie > 0.09 seconds.

(Box 2. Arrhythmia classification)

(i) Heart rate - increased/decreased
(ii) Heart rhythm - regular/irregular
(iii) Site of origin - supraventricular/ventricular
(iv) ECG complexes - narrow/broad

Sinus tachycardia: When the heart rate is more than age appropriate range (Table I) in children with maintenance of sinus rhythm, it is called sinus tachycardia.

Supraventricular tachycardia (SVT): It is a preexcitation syndrome and is an abnormally fast rhythm originating above the ventricles. SVT is the most common significant arrhythmia in children. It is most commonly caused by a re-entry mechanism that involves an accessory pathway or AV conduction system (Fig.17). ECG reveals a heart rate of more than 220/min in infants and more than 180/min in children, absent or abnormal P wave, often constant R-R interval and usually narrow QRS complex (Fig.18).

Atrial flutter: It is characterized by a strictly regular atrial rate (F wave with "saw tooth" configuration) at about 300 beats/minute followed by ventricular response with varying degrees of block (e.g. 2:1,3:1,4:1) and a normal QRS complex (Fig.19).

Atrial fibrillation: There are multiple small migratory reentry circuits in right atrium leading to uncoordinated atrial contraction. P waves are absent. They are replaced by 'F' waves. It is characterized by fast atrial rate (F wave at rate - 350-600 beats/min) and irregular ventricular response with normal QRS complex (Fig.20).
Table III. Identification of cardiac rhythm based on R-R interval

<table>
<thead>
<tr>
<th>R-R Interval</th>
<th>Regular</th>
<th>Irregular</th>
<th>Long pause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow</td>
<td>Sinus bradycardia
 Sinus node dysfunction or AV block with a regular escaperhythm (nodal or ventricular)</td>
<td>Regularly irregular
 Sinus arrhythmia
 Mobitz type 1 AV block (Wenckebach)
 Bigeminy or trigeminy</td>
<td>Sinus pause or arrest
 Complete AV block with no escape rhythm</td>
</tr>
<tr>
<td>Normal</td>
<td>Sinus rhythm
 Ectopic atrial pacemaker
 Accelerated escape rhythm
 2:1 AV block with sinus node tachycardia</td>
<td>Irregularly irregular
 Atrial fibrillation
 Atrial flutter with variable AV conduction
 Ventricular fibrillation</td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>Sinus tachycardia
 Supraventricular tachycardia
 Ventricular tachycardia</td>
<td>Occasionally irregular
 Premature atrial contractions
 Premature ventricular contractions
 2nd degree AV block</td>
<td></td>
</tr>
</tbody>
</table>

Fig.17. Schematic diagram of dual pathways of AV node

a – Normal conduction; b – Re-entrant circuit, resulting in AV nodal re-entrant SVT.

Fig.18. Onset of SVT - Atrial premature contraction (APC) initiating re-entry circuit

Fig.19. Atrial flutter - “saw tooth” undulating P waves

Premature ventricular contraction (PVC) (Fig.21): It is seen as a bizarre and wide QRS complex (> 0.09 secs) occurring earlier than anticipated with T wave pointing in opposite direction of the QRS complex, followed by a full compensatory pause.
Ventricular tachycardia (VT): VT is a series of 3 or more repetitive beats originating from the ventricle distal to bifurcation of bundle of His. It is also defined by a rate faster than 120 beats/min in children. The QRS complex is different from underlying sinus rhythm and normally shows ventriculo-atrial dissociation.

Ventricular fibrillation (VF): It is characterized by low amplitude, rapid irregular depolarization without identifiable QRS complexes. It is an irregular rhythmic configuration and mostly terminates fatally.

Brady arrhythmias

Bradyarrhythmias may be classified as follows:

1. Sinus bradycardia
2. Sinus node dysfunction
3. Atrio-ventricular conduction disturbances
 a. First degree A-V block
 b. Second degree A-V block
 c. Third degree AV block

Sinus bradycardia: The characteristics of this are sinus rhythm but the rate is slow. In infant it is less than 80 per minute while in older child less than 60 per minute.

Sinus node dysfunction (Fig.22): It is characterised by momentary absence of P wave and QRS complex (sinus pause). The causes are increased vagal tone, focal myocarditis, cardiomyopathy, drugs (digoxin, antiarrhythmics), hypoxia and hypothyroidism. In children, atrial surgery is the commonest cause of sinus bradycardia.

Disease specific ECG changes

Congenital heart disease (e.g.) TOF, TAPVC, D-TGA, pulmonary atresia, truncus arteriosus, hypoplastic left heart syndrome shows right axis deviation with Q waves in Leads III and aVR and V4R (Fig.26).

Anomalous origin of left coronary artery from pulmonary artery (ALCAPA) shows deep Q waves, ST segment and T wave inversion in lateral leads I, aVL and V5-V6 in ECG (Fig.27). Tricuspid atresia has left axis deviation with Q waves in I and aVL, right atrial enlargement Indicated by tall p waves in lead II, and left ventricular hypertrophy with strain pattern (Fig.28). Ebstein's anomaly has giant 'P' waves with RBBB pattern,
Fig. 24a. Mobitz type I - Increasing PR interval followed by dropped QRS complex

Fig. 24b. Mobitz type II - Dropped QRS complex without preceeding loss of PR interval

Fig. 25. Third degree heart block - No P waves are conducted to ventricles

Fig. 26. ECG - TOF - RAD with Q wave in LIII, aVR and V₄R

Fig. 27. ECG - ALCAPA - Deep Q waves, ST elevation, T wave inversion in LI, aVL and V₅ - V₆

Fig. 28. ECG - Tricuspid atresia - LAD with Q waves in LI, aVL, tall P in LII
first degree AV block and low voltage especially in limb leads (Fig.29).

Mitral stenosis has right axis deviation, left atrial hypertrophy and right ventricular hypertrophy (Fig.30). ECG changes in Wolf Parkinson White syndrome are short PR interval, delta wave (initial slurring of QRS) and wide QRS (Fig.31). In long QT syndrome, Bazett formula \((QTc = QT/\text{square root of the R-R interval})\) is used to calculate the corrected QT interval (Fig.32). QT interval is measured from the beginning of the QRS complex to the end of the T wave in LII or V5, V6. QTc more than 0.46 sec is abnormal.

Points to Remember

- An electrocardiogram (ECG) is the only investigation which records changes in the electrical activity of the heart.
- Measurement of heart rate and identification of cardiac rhythm go hand in hand - abnormalities of heart rate can result in arrhythmias.
- Main waves on ECGs have been named as PQRST and U. All the waves signify depolarization and repolarization of atria, ventricles and interventricular septum.
- ECG of the newborn shows right ventricular dominance due to increased pressures on right side of the heart.
- Common ECG abnormalities include atrial and ventricular enlargement or hypertrophy and different types of arrhythmias.
- Arrhythmias are rhythm disturbances due to abnormal impulse generation, impulse conduction, block or delay.
- Specific ECG changes in some congenital cardiac anomalies are diagnostic - which include TOF, anomalous origin of coronary artery from pulmonary artery, tricuspid atresia and Ebstein's anomaly.

References

Administration-to-birth intervals of antenatal corticosteroids (ANS) vary. The significance of this variation is unclear. Specifically, to our knowledge, the shortest effective administration-to-birth interval is unknown. The objective was to explore the associations between ANS administration-to-birth interval and survival and morbidity among very preterm infants.

The Effective Perinatal Intensive Care in Europe (EPICE) study, a population-based prospective cohort study, gathered data from 19 regions in 11 European countries in 2011 and 2012 on 4594 singleton infants with gestational ages between 24 and 31 weeks, without severe anomalies and unexposed to repeated courses of ANS. Data were analyzed November 2016. The exposure considered was time from first injection of ANS to delivery in hours and days. Three outcomes were studied: in-hospital mortality; a composite of mortality or severe neonatal morbidity, defined as an intraventricular hemorrhage grade of 3 or greater, cystic periventricular leukomalacia, surgical necrotizing enterocolitis, or stage 3 or greater retinopathy of prematurity; and severe neonatal brain injury, defined as an intraventricular hemorrhage grade of 3 or greater or cystic periventricular leukomalacia.

Mortality for the 662 infants (14.4%) unexposed to ANS was 20.6% (136 of 661). Administration of ANS was associated with an immediate and rapid decline in mortality, reaching a plateau with more than 50% risk reduction after an administration-to-birth interval of 18 to 36 hours. A similar pattern for timing was seen for the composite mortality or morbidity outcome, whereas a significant risk reduction of severe neonatal brain injury was associated with longer administration-to-birth intervals (greater than 48 hours). For all outcomes, the risk reduction associated with ANS was transient, with increasing mortality and risk for severe neonatal brain injury associated with administration-to-birth intervals exceeding 1 week. Under the assumption of a causal relationship between timing of ANS and mortality, a simulation of ANS administered 3 hours before delivery to infants who did not receive ANS showed that their estimated decline in mortality would be 26%.

Antenatal corticosteroids may be effective even if given only hours before delivery. Therefore, the infants of pregnant women at risk of imminent preterm delivery may benefit from its use.

CONGESTIVE CARDIAC FAILURE - CURRENT CONCEPTS IN MANAGEMENT

*Smita Mishra

Abstract: Clinical syndrome of pediatric heart failure is a gamut of varied etiologies and treatment options. An infant or child presenting with the cardiac dilatation and dysfunction must be proactively investigated for correctable lesions like a structural heart disease, rhythm disorders and electrolyte imbalance. Henceforth, the traditional astuteness for clinical diagnosis remains the handy tool of a cost-effective advanced management-plan. Since research has revealed comprehensively, that HF is a catastrophic outcome of metabolic aberrations resulting into oxidative stress at the cellular level owing to the unbalanced compensatory neuro-hormonal mechanism, new therapeutic substrates are being gauged. Moreover, the solitary decongestive therapy is ousted completely and being replaced by the multipronged approach which includes pharmacotherapy, surgical or catheter intervention as well as the devices to provide mechanical support to the cardiorespiratory unit. New genetic tools are being explored through the gene or stem cell therapy as the futuristic but promising modalities. Finally, the modern management of heart failure is about presumptive, supervised target-oriented fine tuning of the available modalities for a patient, starting from the ICU and extending it up to the rehabilitation home care program.

Keywords: Heart failure, Children, Congestive, Causes, Diagnostic approach, Inotropes, Beta blockers, ECMO, Ventricular assist devices, Cardiac transplantation.

“Heart failure (HF) is a complex clinical syndrome that can result from any structural or functional cardiac disorder that impairs the ability of the ventricle to fill with or eject”.

Epidemiology

Nonetheless, acquired disorders like myocarditis and cardiomyopathies predominate in older children while in infants and young children, correctible lesions predominate. Reported incidence of CHF is 4/1000 person years in infant and in children (<10 years of age), the prevalence is 1.3 in 1000.

Age of onset of heart failure according to etiology

Table II gives of possible diagnosis according to the age of onset of congestive heart failure (CHF). Many congenital heart diseases (CHD) may not follow the rule and may remain asymptomatic till they have some precipitating factors like anemia or endocarditis.

Pathophysiology – Congestive heart failure (Fig.1)

Heart failure is a multifactorial syndrome represented by the deranged energetics and substrate metabolism of cardiac and skeletal muscles. Overall, HF is compensated through three important mechanisms i) sympathetic nervous system (SNS); ii) renin angiotensin system (RAS); iii) release of vasopressin and natriuretic peptides. However, long term effects of resultant adaptive remodelling of cardiovascular system, are catastrophic which eventually, contribute to the oxidative stress at the molecular, cellular, tissue and organ levels causing cardiomyocyte apoptosis, necrosis and cardiac fibrosis leading to maladaptive cardiac dilatation and hypertrophy and unwarranted fluid retention and vasoconstriction.

Obviously, these evidences have led to the efforts to reduce oxidative stress and to induce reverse remodeling by rational prescription of pharmacological agents like spironolactone, ACE inhibitors, carvedilol, optimum exercise, as well as the nutritional supplements known to have anti-oxidant property like taurine, ubiquinone (co enzyme Q10) and omega-3 fatty acid.
Heart failure – Neonates: Management of HF in neonates needs to be customized as they have small myocytes, less developed Frank-starling mechanism, preload dependent contractility and less intracellular calcium. They depend more on chronotropic response (heart rate dependence) to increase the cardiac output.

Heart failure - Structural heart diseases: Heart failure in structural heart disease is unique. In shunt lesions (VSD, PDA), surgical or cath intervention can cure the HF. Duct dependent cyanotic CHDs and acyanotic CHD with obstructive lesions may be palliated by prostaglandin (PG) infusion with or without balloon atrial septostomy (d-TGA) in early neonatal period and the corrective surgery can be done subsequently. Obstructed TAPVC needs the emergency surgery while other non-emergent admixture lesions, like unobstructed TAPVC, truncus arteriousus may wait for few weeks. End-stage myocardial dysfunction in the children with operated or unoperated complex CHD may be refractory to usual pharmacotherapy because systemic ventricle may not have left ventricular morphology.

Heart failure - Coronary artery abnormalities: Unlike adults, only small number of children may have coronary abnormality as the cause of HF (Box 1).

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute HF acute decompensated HF</td>
<td>Rapid onset of low cardiac output, dyspnea, systemic/pulmonary congestion.</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>Volume overloading of upstream chambers leading systemic/pulmonary congestion.</td>
</tr>
<tr>
<td>High output failure</td>
<td>Normal ventricular ejection fraction, but low systemic blood flow /tissue perfusion.</td>
</tr>
<tr>
<td>Pretricuspid shunt</td>
<td>Shunt lesion at atrial level [Pulmonary arterial pressure (PAP)< Systemic blood pressure (SBP) initially]</td>
</tr>
<tr>
<td>Post tricuspid shunt</td>
<td>systolic systemic pressure and pulmonary artery pressure are same (VSD/PDA AP window)</td>
</tr>
<tr>
<td>Hyper kinetic pulmonary hypertension</td>
<td>In post-tricuspid shunt lesions- PA and aortic systolic BP remain same but PA diastolic pressure is low allowing left to right shunt and increased PBF(Qp>Qs.)</td>
</tr>
<tr>
<td>Obstructive pulmonary hypertension & Eisenmenger syndrome</td>
<td>Pulmonary veno-occlusive disease (POVD), PA systolic/Diastolic/Mean pressure = systemic or aortic pressure. CXR- oligemic lungs /no cardiomegaly (except in ASD)</td>
</tr>
<tr>
<td>Primary pulmonary hypertension</td>
<td>In absence of any shunt lesions PA systolic, diastolic and mean pressures are high.</td>
</tr>
<tr>
<td>Persistent pulmonary of new born</td>
<td>Right to left shunt across the persistent PFO and PDA (persistent fetal hypertension circulation) usually after difficult delivery and lung issues.</td>
</tr>
<tr>
<td>Cardiogenic pulmonary edema</td>
<td>Pulmonary edema (PE) with increased pulmonary capillary wedge pressure (PCWP) (>22mmHg), increased pulmonary venous hypertension (PVH) secondary to a cardiac cause.</td>
</tr>
</tbody>
</table>
Table II. Congestive heart failure (CHF) - Usual age of onset

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetus</td>
<td>CHF <6 weeks</td>
<td>CHF >6 weeks</td>
<td>CHF beyond infancy</td>
</tr>
<tr>
<td>Supraventricular tachycardia, severe complete heart block, severe hypoglycaemia, anemia, Ebstein’s anomaly or dysplastic tricuspid valve, atrioventricular septal defect with severe atrioventricular valve regurgitation, premature closure of ductus arteriosus or foramen ovale, fetal myocarditis</td>
<td>(Column A + following cardiac diseases) birth asphyxia, sepsis, hypercalcemia, critical AS/PS, duct dependent congenital heart diseases (DDCHDs), large PDA/VSD/ Atrio ventricular septal defect (AVSD) / aorto pulmonary window (APW) in preterm neonates, admixture lesions-truncus arteriosus, unobstructed TAPVC, tricuspid atresia without PS, single ventricle, obstructed TAPVC, severe mitral regurgitation, complex congenital anomaly without pulmonary stenosis - Heterotaxy syndrome, large systemic arteriovenous fistula (Vein of Galen malformation), adrenal insufficiency/severe thyrotoxicosis</td>
<td>(Column A&B+ following ardiac diseases) large VSD, large PDA, AP window, AV canal defect etc, ALCAPA, fulminant myocarditis, dilated cardiomyopathy, atypical Kawasaki disease with coronary involvement/ myocarditis</td>
<td>(Column A, B, C + following cardiac diseases) severe valvular regurgitation with or without rheumatic aetiology, infective endocarditis, myocarditis, cardiomyopathy, anemia, acute systemic hypertension -primary or secondary HT, late presentation of ventricular failure in operated and unoperated cases of CHDs, cardiomyopathy – dilated, restrictive, hypertrophic, drug induced, late presentation of HF in otherwise asymptomatic heart defect may also be due to some additional factors like anemia, infection.</td>
</tr>
</tbody>
</table>

Fig.1. Congestive heart failure - Hormonal and cellular basis

- **Structural heart disease:**
 - Pressure overload
 - Volume overload

- **Systolic or diastolic or combined pump failure.**
 > increased systemic resistance, PCWP >18mmHG

- **HF**

- **Intervention:**
 - Fluid optimization, O₂, ventilation.
 - Inotropes / vasodilators / antioxidants
 - ECMO, VAD

- **Adaptive:**
 - Catecholamine; Renin angiotensin system, vasopressin, cardiac natriuretic peptide

- **Cardiac hypertrophy (first response) molecular alterations of the myocyte due to abnormal gene expressions encoding proteins for contraction and relaxation, altered expression of mRNA for sarcomplasmic Ca + ATPase = relaxation abnormality, abnormal mitochondrial response, altered expression and function of adrenergic receptor. Maladaptive myocardial hypertrophy/fibrosis.**

- **No intervention or sub-optimal intervention**
 - Irreversible CHF

- **Rhythm disorder**
 - Primary myocardial disorder
Box 1. Coronary abnormalities

I. Anomalous origin of coronary artery (CA) from pulmonary artery (ALCAPA).

II. Large coronary arterio-venous fistula (AVF)

III. Post Kawasaki disease-CA aneurysm or stenosis (may present like adult with myocardial infarction).

IV. Coronary abnormalities associated with complex CHDs like pulmonary atresia/intact ventricular septum or ostial atresia (may have adult like chest-pain and ischemic pattern on ECG).

Heart failure and rhythm disorders: Both SVT and complete heart block are common but treatable cause of fetal, neonatal and infantile HF. Ventricular tachycardia (VT) or atrial fibrillation (AF) are usually intractable and are expression of, either the late presenting uncorrected and corrected structural heart diseases or the inheritable channelopathies. Bradycardia with CHF in fetus, infants and children may be due to complete heart block and may have underlying corrected transposition physiology.

Heart failure and electrolyte imbalance: Hypocalcemia particularly is a common and curable cause of secondary dilated cardiomyopathy in infants.

Heart failure and cardiomyopathy: CMP can be classified as dilated (mostly systolic dysfunction), hypertrophic (HOCM), restrictive (diastolic ventricular dysfunction to begin with) and non-compaction CMP. There may be a variety of genetic predisposing factors.

Dilated CMP is the the major cause of pediatric cardiac transplant. Approximately 22%-25% of these children may recover spontaneously.

Heart failure - Miscellaneous group: There are many other causes of heart failure which include infection (particularly bacterial endocarditis), infiltrative, familial (hypercholesterolemia), vasculopathies involving coronary arteries, cardiomyopathy related to liver and kidney disorders.

Heart failure - Functional classification (Table IIIA & B)

1. New York Heart Association (NYHA classification)

NYHA classification is the most commonly used functional classification for adults which can be used for grown-up children.4

2. Modified Ross classification - The Ross classification for heart failure was developed for infants and subsequently was modified to accommodate the older children as well. The scoring system incorporates feeding difficulties growth issues and exercise intolerance into a comparable numeric score to that of NYHA classification.5

Diagnosis

The diagnosis of HF is arrived based on the constellation of clinical signs and symptoms.6,7 Symptoms of heart failure varies with age. HF in infants is characterized by excessive, unprovoked cry, suck-rest-suck cycle, excessive sweating, lethargy, hurried difficult breathing, failure to thrive (fall in weight for age below two percentiles from a previously noted growth pattern), +/- cyanosis. HF beyond the infancy is characterized by growth failure, respiratory distress, exercise intolerance. Older children may present with chest pain, wheezing, dependent edema and ascites.

Table IIIA. Functional classification of heart failure (NYHA and Ross classification)

<table>
<thead>
<tr>
<th>Class</th>
<th>New York Heart Association (NYHA)</th>
<th>Ross functional class</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>No limitations of physical activity</td>
<td>No limitations or symptoms</td>
</tr>
<tr>
<td>II</td>
<td>May experience fatigue, palpitations, dyspnea, or angina during moderate exercise but not during rest</td>
<td>Infants: Mild tachypnea or diaphoresis with feeding Older children: Mild to moderate dyspnea on exertion</td>
</tr>
<tr>
<td>III</td>
<td>Symptoms with minimal exertion that interfere with normal daily activity</td>
<td>Infants: Growth failure, marked tachypnea or diaphoresis with feeding Older children: Marked dyspnea on exertion</td>
</tr>
<tr>
<td>IV</td>
<td>Unable to carry out any physical activity, symptoms of HF at rest that worsen with any exertion</td>
<td>Symptoms at rest such as tachypnea, retractions, grunting or diaphoresis</td>
</tr>
</tbody>
</table>
Table IIIB. Modified Ross criteria - Variables

<table>
<thead>
<tr>
<th>Age in years</th>
<th>0</th>
<th>+1</th>
<th>+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respiratory rate (per minute)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td><50</td>
<td>50-60</td>
<td>>60</td>
</tr>
<tr>
<td>1-6</td>
<td><35</td>
<td>35-45</td>
<td>>45</td>
</tr>
<tr>
<td>7-10</td>
<td><25</td>
<td>25-35</td>
<td>>35</td>
</tr>
<tr>
<td>11-14</td>
<td><18</td>
<td>18-28</td>
<td>>28</td>
</tr>
<tr>
<td>Heart Rate (Per minute)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td><160</td>
<td>160-170</td>
<td>>170</td>
</tr>
<tr>
<td>1-6</td>
<td><105</td>
<td>105-115</td>
<td>>115</td>
</tr>
<tr>
<td>7-10</td>
<td><90</td>
<td>90-0-100</td>
<td>>100</td>
</tr>
<tr>
<td>11-14</td>
<td><80</td>
<td>80-90</td>
<td>>90</td>
</tr>
<tr>
<td>Hepatomegaly (cm)</td>
<td><2</td>
<td>2-3</td>
<td>>3</td>
</tr>
</tbody>
</table>

Clinical assessment of child with HF (Table IV): In triage, all critically ill children must be examined to rule out cardiovascular instability - by monitoring heart rate and HR variability, palpation of all the pulses for volume, thrill, radio-femoral delay, blood pressure in all the 4 limbs, SPO2 in right upper and lower limb and core - peripheral temperature gradient. Characterization of S2 split, relationship of A2 and P2 and relative loudness of P2 are the most important auscultatory signs. RV failure is identified by triad of peripheral venous congestion, intracavitary and interstitial fluid collection.

Investigations

Chest x-ray (Table V): There are few classical chest x-ray images like ‘figure of 8’ in unobstructed TAPVC and cardiomegaly. Infants presenting with cardiomegaly usually labelled as myocarditis/DCMP, may have following correctible lesions: 1) ALCAPA, 2) Coarctation of aorta (LVH), 3) tachycardia induced cardiomyopathy (episodes of SVT, Accessory pathway in surface ECG), 4) Hypocalcemic CMP (Prolonged QTc).

Electrocardiogram: Few important abnormalities of ECG which may help in suggesting abnormality and need to be investigated are as follows:

(i) Abnormal HR, R-R interval, PR relationship, QTc interval, delta wave.
(ii) Low voltage ECG (limb leads < 5 mV; Chest leads: <10mV)
(iii) The pure R, rR’ or QR pattern in V1; upright T in lead V1 beyond 72 hours of age;
(iv) Broad and deep Q wave in lead I and aVL (ALCAPA)
(v) QRS axis beyond 120 or a superior axis (S wave dominance in aVF, R dominance in aVR or aVL)

Table IV. Heart failure: Clinical evaluation

<table>
<thead>
<tr>
<th>Clinical evaluation</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormality of pulse/systemic blood pressure</td>
<td>Low cardiac output: Weak, thready pulse no carotid thrill, low BP; Coarctation of aorta, Supravalvar AS, Aortic stenosis. SVT/AV block: Disproportionate tachycardia or bradycardia, Aortic regurgitation/PDA: Collapsing pulse. Systemic hypertension.</td>
</tr>
<tr>
<td>Systemic venous congestion</td>
<td>Dependent site edema, puffy eyelids, ascites, raised JVP (difficult to appreciate in infants) soft, tender hepatomegaly, positive hepato-jugular reflex.</td>
</tr>
<tr>
<td>SpO2</td>
<td>Cyanotic CHD with increased PBF :CHF with SpO2<95%, duct dependent systemic circulation right upper and lower SpO2, difference >3%; Acyanotic CHD:SpO2 >95%</td>
</tr>
<tr>
<td>Cardiac evaluation</td>
<td>Cardiomegaly and changed intensity and timing of cardiac sound: ASD/TAPVC abnormal S2 (wide and fixed); VSD: wide and variable, loud P2; PS-wide and variable, soft P2 with ejection murmur/ click; PDA-narrow split/continuous murmur-; AS:paradoxical split ESM/Constant click. split and intensity) Significant murmur: present with thrill, parasternal heave, systolic murmurs (>3/6) and diastolic murmurs, associated with aforesaid findings. pericarditis rheumatic fever: Pericardial rub; IE: changing murmur with fever, peripheral signs.</td>
</tr>
<tr>
<td>Respiratory system</td>
<td>Pulmonary congestion: left sided obstructive or regurgitant valvar lesions or in severe LV dysfunction; crackles in lungs: in shunt lesions: respiratory infection</td>
</tr>
</tbody>
</table>
Table V. Chest x-ray and pediatric heart failure

<table>
<thead>
<tr>
<th>Variables on X-Ray chest</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac size</td>
<td>Cardiomegaly: Cardiothoracic ratio >60% (neonates); >55% (older infants)</td>
</tr>
<tr>
<td>Cardiac apex, Stomach bubble, Hepatic shadow</td>
<td>Cardiac apex and right lobe of liver on same and stomach bubble on opposite side - complex congenital heart disease. Central liver - heterotaxy syndrome.</td>
</tr>
<tr>
<td>Cardiac base or pedicle</td>
<td>Acyanotic CHD - Normal or dilated. Cyanotic CHD - Usually narrow due to small branch PA (TOF), anteroposterior great vessels (d-TGA) or absent thymus.</td>
</tr>
<tr>
<td>Cardiac contour</td>
<td>Boot shaped – TOF; egg on side - d-TGA; Snowman sign - Supracardiac TAPVC; Box like heart - TR with Ebstein’s anomaly/Uhl’s anomaly; Cardiomegaly with LV apex - DCM; broad apex - Tricuspid atresia; Double shadow sign-LA enlargement; third mogul sign-LA enlargement, coronary AVF, dilated RVOT</td>
</tr>
<tr>
<td>Pulmonary blood flow</td>
<td>Increased PBF: end-on vascular shadow (>4 per lung field) beyond the peri-hilar area, end-on vessel>bronchial shadow, increased vascularity in lateral 1/3rd of lung field. Dilated pulmonary arteries and enlarged cardiac shadow. Decreased PBF: translucent lungs, small-streaky pulmonary arteries end on arteriole smaller than bronchus. Special pattern of cardiac shadow like boot shaped heart of TOF. Pulmonary venous hypertension: Cephalization, redistribution of vascular markings (grade I) curley’s A,B, C lines (Grade II - Pulmonary capillary wedge pressure<23mmHg), ground glass opacity, bat-wing pulmonary edema, pleural effusion (Grade III-PCWP->23mmHg). Eisenmenger syndrome: dilated proximal pulmonary arteries and tapering or pruning of distal pulmonary arteries as well as diffuse oligemia of lungs.</td>
</tr>
</tbody>
</table>

Table VI. Laboratory work-up

<table>
<thead>
<tr>
<th>Variables</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum electrolytes</td>
<td>Sodium: (Rule out hyponatremia/hypernatremia; 1/4th patients have Na<135 mEq/L); Potassium, calcium (Hypercalcemic cardiomyopathy)</td>
</tr>
<tr>
<td>Renal function test</td>
<td>For drug-doses adjustment; hepatic and renal dysfunction may be associated with cardiomyopathy and pulmonary edema (renal).</td>
</tr>
<tr>
<td>Liver function test</td>
<td></td>
</tr>
<tr>
<td>Hematological test</td>
<td>Complete blood count, platelets, Hb to rule out anemia, infection etc</td>
</tr>
<tr>
<td>Inflammatory markers</td>
<td>CRP to rule out infection, D-Dimer to rule out pulmonary embolism. ASO titres, ESR must be sent in a case of suspected acute rheumatic fever.</td>
</tr>
<tr>
<td>Blood cultures</td>
<td>Three blood culture from different sites at the interval of half to one hour, must be taken in a case of suspected IE.</td>
</tr>
<tr>
<td>Bio-markers</td>
<td>Natriuretic Peptides -BNP, NT-pro-BNP, ANP</td>
</tr>
<tr>
<td>ABG/VBG</td>
<td>Arterial/venous gas analysis: to know the saturation, PO₂, PCO₂, pH. HCO₃⁻, base deficit access. Additionally, the values for blood sugar lactate and electrolytes like sodium, potassium and calcium can also be obtained.</td>
</tr>
<tr>
<td>Cardiac enzymes</td>
<td>Biomarkers of myocardial injury: Serial measurements of CPK, CPK-MB and cardiac troponin T have prognostic significance. In children presenting with LV dysfunction, an elevated level may suggest acute myocarditis.</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Other lab studies: Anti-nuclear antibodies, serum carnitine levels, urine organic acids and serum amino acid profile (metabolic cardiomyopathy), blood and urine viral assays for Epstein-Barr, Coxsackie, cytomegalovirus, Lyme disease etc.</td>
</tr>
</tbody>
</table>
Laboratory work-up (Table VI): As per protocol, child with HF must undergo various laboratory test to know about the functional status of other organs, electrolyte imbalance, endocrinial disorders, infection or collagen disorders. Arterial/venous blood gas analysis are essential. B-type natriuretic peptide-BNP (>300pg/ml) is a biomarker which can differentiate between infection and heart failure in a sick child.\(^8\) Cardiac enzymes must be measured in cases of myocarditis and CAD.\(^9\)

Special investigation (Table VII): Point of care (POCUS) echocardiography on day today basis, is now essential for every intensive care unit to assess structural abnormality; functional abnormality, left/right ventricular ejection fraction and fluid status. It also helps in long term follow-up and family screening in genetically predisposed cardiac abnormalities. Cath interventions are therapeutic in structural heart disease.\(^10\) CT angio and magnetic resonance imaging provide additional modalities to make diagnosis.\(^11\) In cases with possibilities of underlying genetic etiology, genetic testing must be done.\(^12\)

Management of heart failure\(^13-18\)

The children with CHF may be grouped as follows: 1. Decompensated heart failure and cardiogenic shock; 2. Compensated heart failure and 3. Cardiac arrest: when ACLS/PAL protocols must be followed for the resuscitation and revival followed by the intensive care management.\(^16\) Compensated heart failure has to be differentiated from decompensated heart failure as management varies (Table VIII). Asthma, pericarditis, electrolyte imbalance, cardiac tamponade, acute anemia, pneumothorax, sepsis have to be differentiated from heart failure.

Management of decompensated heart failure (Fig.2)
Goals of management are as follows:

i. Adequate oxygenation must be ensured with oxygen by prong or high flow cannula or with invasive or noninvasive mechanical ventilatory support. High frequency jet ventilation may optimize lung volumes at minimum mean airway pressures (Table IX).

ii. Rationalized volume replacement (5-10ml/kg) is recommended under monitoring with echo/invasive CVP monitoring or clinical evaluation of JVP and hepatomegaly. CVP/JVP>10 mmHg (if no cardiac or lung disease) correlates well with high left atrial filling pressure (PCWP=22mmHg). Echo-guided evaluation of the IVC size, collapsibility index, stroke volume and ejection fraction are more specific parameters for critical evaluation. The crystalloids are good choice for volume supplement but colloids, Plasma and blood can be given if required.

iii. Use of vasodilators and inotropes: In cardiogenic shock, combination of low dose epinephrine or dobutamine and low dose milrinone is one of the

Table VII. Special investigations

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echocardiography</td>
<td>Segmental analysis, LV mass, wall thickness, LVEF, FS, TAPSE (Tricuspid annular plane systolic excursion) RV Fractional area shortening, IVC collapsibility index</td>
</tr>
<tr>
<td>Angiography</td>
<td>Diagnostic and cath interventions like device closure for appropriated shunt lesions, Ballooning procedures for stenotic valves, coarctation of aorta</td>
</tr>
<tr>
<td>CT angiography</td>
<td>For anatomical details of various congenital anomaly, pericardial thickening.</td>
</tr>
<tr>
<td>Magnetic resonance Imaging</td>
<td>For structural details, differentiates inflammatory myocarditis from other reasons of myocardial dysfunction, diagnosis of cardiac tumours, also for Qp:Qs calculations</td>
</tr>
<tr>
<td>Genetic testing</td>
<td>In children having dysmophism along with CHD, cardiomyopathies (30% may have genetic predisposition)</td>
</tr>
</tbody>
</table>

Table VIII. Compensated vs decompensated heart failure

<table>
<thead>
<tr>
<th>Findings</th>
<th>Compensated HF</th>
<th>Decompensated HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>Tachycardia</td>
<td>Tachycardia</td>
</tr>
<tr>
<td>CFT</td>
<td>Prolonged</td>
<td>Prolonged</td>
</tr>
<tr>
<td>Peripheral pulse</td>
<td>Weak</td>
<td>Weak imperceptible</td>
</tr>
<tr>
<td>Systolic BP</td>
<td>Normal</td>
<td>Low</td>
</tr>
<tr>
<td>Mottling skin, peripheral cyanosis</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Metabolic acidosis</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Altered Sensorium</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Systolic BP</td>
<td>Normal</td>
<td>Low</td>
</tr>
</tbody>
</table>
effective combinations.17-21 Levosimendan, a Ca+ sensitizer drug may help in tackling catecholamine receptor's down-regulation.20 The ABP/VBG monitoring is required to strategize the use of inotropes, vasodilators and diuretics (Table X).

iv. Decongestion and judicious use of diuretics and vasodilators are recommended once the optimal systolic BP is achieved. Mostly a SBP of >80 mmHg and pulse pressure of more than 25\% suggests adequate cardiac output in older children.

v. Timely drainage of significant pericardial effusion, pleural effusion, ascites not responding to conservative management, is required.

vi. Rhythm control: Heart rate and HR variability must be verified. Monotonous rhythm suggests for the arrhythmia or autonomic dysfunction particularly in a child with altered sensorium. IV administration of adenosine remains the first drug of choice in a hemodynamically stable patient. In an unstable patient, electrical cardioversion is recommended.

vii. There is role of identifying viral markers. Intravenous immunoglobulin is an established mode of therapy for Kawasaki disease but not yet in myocarditis and post inflammatory dilated cardiomyopathy (DCMP). However, cases of myocarditis where certain viral etiology (adeno or parvovirus B) is identified, success has been reported. In such cases, interferon B and immunosuppressant therapy with prednisolone with or without azathioprine or cyclosporine may also be valuable.21

viii. Pulmonary artery banding: PAB is regularly used in those CHDs with increased PBF where total correction is not possible. Recently it is used successfully in the cases of dilated cardiomyopathy also.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{heart_failure_algorithm.png}
\caption{Acute decompensated heart failure - Algorithm}
\end{figure}

The junctional tachycardia, common in post-op patients, can be treated with core cooling, amiodarone infusion and by reducing the doses of the inotropes. IV amiodarone is an obvious choice of most of the tachyarrhythmias barring polymorphic VT, due to its efficacy, relative safety and availability.
ix. The correction of acidosis, hypo/hyperglycemia, hypo or hyperkalemia, hypocalcemia and hypomagnesemia, is paramount.

x. There may be a need of mechanical support (ECMO/VAD) or a heart or heart-lung transplantation.

xi. Moderate hypothermia (33°C) in patients with cardiogenic shock and post resuscitation patients has been found to be neuro-protective.

xii. If endocarditis is suspected, antibiotics must be started after taking 3 cultures.

xiii. Endocrine agents like arginine vasopressin, tri-iodothyronine, angiotensin and hydrocortisone are being used to improve the outcome of HF presenting with shock.

xiv. Pulmonary vasodilators (sildenafil, bosentan) are recommended primary pulmonary hypertension. In children with RVF and not responding to pharmacotherapy, cath (balloon atrial septostomy) or surgical intervention (Pott’s shunt) can be done.

xv. Primary or secondary systemic hypertension may also cause heart failure in children. They may present as hypertensive emergency. The normalization of blood pressure must be achieved in 24 to 48 hours.

Management of heart diseases presenting with heart failure (Table XI)

Usually babies with CHDs presenting with heart failure can be grouped as:

Transport of sick neonate

Before planning transport of a neonate the diagnosis must be ascertained by clinical evaluation and all available diagnostic modalities. If prostaglandin infusion is required, mechanical ventilation must be kept handy. One must not try to give high oxygen to escalate SpO₂ above 90% in a baby with cyanotic CHD. Appropriate investigations and sepsis screening must be done and clinical summary must be sent to the targeted tertiary care centre. Also the financial burden must be explained to the family before transport.

Assessment of therapeutic efficacy

The useful indicators of successful correction are

1. Reduced CRT (<2 sec), decreased core and peripheral temperature gap <2 degrees; improved color of skin, mental status, breathing pattern and pulse volume.

2. Improved systemic blood pressure (defined as ->60 mm Hg in term neonates; >70 mm Hg -in infants; >70 mm Hg + (2 × age in years) in 1-10 years; >90 mm Hg in age group >10years; mean arterial BP> gestational age or 30 mm Hg in preterm neonates)

3. Decrease in shock index (HR/SBP) - Shock Index Pediatric adjusted (SIPA)

Table IX: Oxygen and ventilation in CHF

<table>
<thead>
<tr>
<th>Strategies</th>
<th>Comments:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous breathing</td>
<td>Spontaneous breathing helps diastolic flow across the pulmonary bed, hence good for restrictive RV physiology (example post op TOF) and Fontan repair. It can be supported with nasal prongs or high flow nasal cannula (0.5-2 L/min)</td>
</tr>
<tr>
<td>Non-invasive positive pressure ventilation (NIIPV)*</td>
<td>1.: continuous positive airway pressure (CPAP) : Helpful in avoiding tracheal intubation in few cases. Also, it helps in weaning from mechanical ventilation. 2. bilevel positive airway pressure (BiPAP) BiPAP provides 2 levels of positive pressure: inspiratory positive airway pressure (IPAP) and expiratory positive airway pressure (EPAP). This is highly beneficial in patients with respiratory fatigue or failure.</td>
</tr>
<tr>
<td>Positive pressure Ventilation</td>
<td>Improves lung recruitment and interaction between cardio-pulmonary unit. It decreases the work of breathing, ventricular filling, ventricular transmural pressure and afterload in patients with LV dysfunction. In conditions with increased PBF helps in controlling PBF/pH/PVRI. Beneficial in conditions like myocarditis, post op structural heart diseases.</td>
</tr>
</tbody>
</table>

*Non-invasive ventilation delivers mechanically assisted breaths without the placement of an artificial airway; includes continuous positive airway pressure (CPAP) and bilevel positive airway pressure (BiPAP)
Table X. Antiarrhythmic drugs in emergency management of a child presenting with heart failure

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lidocaine (IB)</td>
<td>Ventricular arrhythmia: 0.5-1 mg/kg q5-10 min. Loading dose: 1 mg/kg Maintenance: 10-50 mcg/kg/min by infusion</td>
</tr>
<tr>
<td>Esmolol</td>
<td>50-100mcg/kg/min loading; maintenance:50-300mcg/kg/min (max dose1000mcg)</td>
</tr>
<tr>
<td>Metoprolol</td>
<td>PO: 0.5-1 mg/kg/d, divided in 12 hourly doses; IV 0.1 mg/kg/dose; Infusion:3-5mcg/kg/min</td>
</tr>
<tr>
<td>Amiodarone (III)</td>
<td>5 mg/kg IV/IO; bolus for VF/pulseless VT infuse over 20–60 min for perfusing tachycardias (25mcg/kg/min for 3-4 hours), Maintenance: 5-15 mcg/kg/min for 4-6 hour. PO: <1 year: 600-800mg/1.73² once a day 4-15 days. >1 year:2.5-5.5 mcg/kg once a day. 4-15 days</td>
</tr>
<tr>
<td>Adenosine</td>
<td>First dose: 0.1 mg (100mcg)/kg IV (Max 6 mg) ; Second dose: 0.2 mg (200mcg)/kg IV (Max 12 mg); Third dose : 0.3 mg(300 mcg) IV (Max 18mg)</td>
</tr>
<tr>
<td>Digoxin</td>
<td>Initial digitalization dose 10-12 mcg/kg IV, q8h X3doses; 8-10mcg/kg PO in twice a day</td>
</tr>
</tbody>
</table>

Table XI. Timing and mode of intervention in various heart diseases

<table>
<thead>
<tr>
<th>CHDS</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyanotic CHDs Severe PS/AS/coarctation of aorta (Card. emergency)/aortoarteritis</td>
<td>Prostaglandins for neonates. Infant and children: Emergency ballooning or surgery. COA, aortoarteritis: Management of SBP, Ballooning, stenting, anti-inflammatory management of aortoarteritis</td>
</tr>
<tr>
<td>ALCAPA (Cardiac emergency)</td>
<td>Classical ECG (Figure 9) Management: ICU care, surgery-re-implantation of coronary artery into the aorta</td>
</tr>
<tr>
<td>Obstructed TAPVC (Card. emergency)</td>
<td>Mechanical ventilation and urgent cardiac surgery.</td>
</tr>
<tr>
<td>Preterms with large PDA (Card. emergency)</td>
<td>Fluid restriction, decongestive medications, medical closure (indomethacin, ibuprofen, paracetamol). surgical closure or coiling.</td>
</tr>
<tr>
<td>Transposition of great vessels (Cardiac emergency)</td>
<td>Intact IVS-Prostaglandin infusion, BAS, Arterial switch operation within 2 weeks. TGA+VSD/PDA-decongestive therapy, Surgery 2-4 months.</td>
</tr>
<tr>
<td>Infants with admixture lesions (truncus arteriosus, TAPVC)</td>
<td>Decongestive therapy, nutritional support, elective Surgery: 4-8 weeks.</td>
</tr>
</tbody>
</table>
A. 1.2 (4-6 years); B. 1 (6-12 years); C. 0.9 (>12 years)

4. Urine output more than 1 mL/kg per hour in infants and children or more than 30 mL/h in adolescents

5. Mixed venous saturation more than 70% and blood lactate less than 2 mmol/L.

6. Cardiac Index (CI) measured between more than 3.3 and less than 6 L/min/m² (if measurement is possible).

Outpatient management of pediatric heart failure

Goals - Patient who have compensated HF or those who have been treated successfully for ADHF are treated outside the hospital to maintain the successful outcome of in-house management with pharmaco-therapy and nutritional support, bridge to corrective (CHD) / transplant therapy and to rehabilitate the patients.

General Measures: The special care for children with HF includes feeding, nutritional support, home oxygen therapy.

Pharmacologic therapy-to improve cardiac function

The drugs may be broadly grouped into three classes:

a) to combat neuro-hormonal activation, oxidative stress and to induce reverse cardiac remodeling (eg: β blockers, ACE Inhibitors, ARBs (angiotensin receptor blockers), aldosterone antagonists (spironolactone and eplerenone).

b) to keep the fluid balance (loop diuretics and thiazides) and

c) To treat the precipitating cause like antihypertensive drugs, antiarrhythmic drugs, thyroxin, steroids.

Angiotensin converting enzyme inhibitors (ACEi), angiotensin receptor blockers (ARBs), Neprilysin inhibitors

ACE inhibitors block the conversion of angiotensin I to Angiotensin II and hence they prevent RAS mediated catastrophic cardiovascular remodeling. They are contraindicated in azotemia and may cause hyperkalemia, hypotension, neutropenia, cough, altered taste and drug interactions. Primarily they are recommended for acyanotic and cyanotic CHD with increased PBF, systemic hypertension, DCMP as frontline drugs.

ARBs are a related class of drugs that act directly on Angiotensin II AT1 receptor. In practice, a beneficial effect is mitigation of cough due to unopposed actions of bradykinin, an effect of ACE inhibition. Sacubitril (neprilysin inhibitor) and valsartan (ARBs) combination is another promising new drug. Losartan is also useful in preventing aortic root dilatation in Marfan syndrome and alike diseases.

β blockers

Beta-blockers antagonize catecholamine to decrease the heart rate, oxygen consumption, arrhythmogenicity, ventricular after-load by bringing down blood pressure. In due course, they improve the ejection fraction and promote ventricular remodeling. The metoprolol and bisoprolol are β1 selective drugs used for hypertension, tachyarrhythmia and HF. Carvedilol is a most widely used, non-selective β blocker for the HF in children, which has shown the beneficial effect on the cytosolic and mitochondrial calcium regulation during oxidative stress-induced apoptosis of cardiac myocytes.

Digitalis

Despite the extensive debate against its use, digoxin stays in the list of the drugs recommended for HF. It increases sarcoplasmic calcium concentrations via inhibition of myocardial sodium-potassium ATPase pump. It increases diastolic time and is useful in controlling stress related sympathomimetic response generating disproportionate tachycardia. It has many side effects like-nausea, vomiting visual disturbances and rhythm disturbances. The dose of digoxin is reduced to less than two third, in those with DCMP particularly when combined with the carvedilol.

Diuretics

Diuretics are best tool to optimize preload to counter the fluid overload and sodium retention. Use of loop diuretics requires careful monitoring of electrolytes, hypovolemia, renal function and urine output. Loop diuretics have been associated with toxicity like ototoxicity, dehydration, electrolyte imbalance and renal stones. Usually, aldosterone inhibitors or ACE inhibitors rather than oral potassium preparations are used, to overcome the hypokalemia associated with the administration of the loop diuretics in pediatric practice. Resistance to diuretics is known. It is defined as failure to reduce extravascular volume despite of adequate doses of diuretics. Excess intake of sodium may be one of the causes. Switching over to IV diuretics, use of AVP receptor antagonists or addition of metolazone (a thiazide like diuretic) can be a useful way to tackle it.

The aldosterone antagonists like spironolactone and eplerenone, are potassium sparing and they help in cardiac remodeling by inhibiting cardiac fibrosis.
Arginine vasopressin receptor antagonist: AVP level rises in patients with CHF and may be a cause of hyponatremia co-existing with CHF. Hence, AVP receptor antagonist-veptans like tolvaptan are potential adjunct in HF therapy.

Inotropes in outpatient setting

To optimize the cost, intermittent inotrope administration has been advocated as outpatient therapy. Some studies have shown some benefit of oral low dose milrinone and pulsed levosimendan.

Anti-platelet, anticoagulation in HF

Patients with severe LV dysfunction, atrial fibrillation and those with prosthetic implants need to be put on anticoagulation/antiplatelet therapy to avoid thrombosis.

Nutrition in HF

Failure to thrive is an important feature of CHF. Following are the factors responsible for the malnutrition. (a) Increased work of breathing and cardiac stress due to tachycardia, (b) Loss of appetite and recurrent chest infection, (c) altered microcirculation and permeability of intestine, (d) absorption of bacterial endotoxins by the GIT, triggering release of cytokines which then act as cardio suppressors. (e) Unplanned diet plan. Diet needs to be supplemented for increased requirement of calories, protein, omega 3 fatty acids and micronutrients: including thymine, l-carnitine, Vit D, Ca, Mg, taurine, co-enzyme Q 10. These micronutrients may also help in combating oxidative stress and mitochondrial function. There may be resistance to growth hormone, testosterone as well as appetite-stimulating peptide ghrelin, contributing to the failure to thrive.

Advanced therapies for refractory HF

The patients with severe symptoms despite maximum pharmacotherapy, are designated as refractory, end stage (stage D) heart failure. Mechanical circulatory support is offered to these patients (Fig.3). They are not advised when long term outcome is poor because of other reasons like neurological or chromosomal disorders. A conceptual extension from the cardio-pulmonary bypass, used during the open heart surgery, the extracorporeal membrane oxygenation (ECMO) provides a window-period for spontaneous recovery of cardio-pulmonary unit (Fig.11). Intra-aortic balloon pump in pediatrics is only useful in bigger children. The ventricular assist devices (VAD) are artificial device with a life of 4-5 years, used as “bridge to transplant” in patients with refractory CHF, but are hugely expensive.

Fig.3. Algorithm of mechanical support in heart failure
Electrophysiology considerations

Intractable supraventricular and ventricular arrhythmia needs more definitive intervention. The important modalities to control arrhythmias are 1) pharmaco-therapy; 2) radiofrequency ablation; 3) modified maze procedure during cardiac surgery 4) intra ventricular device/ cardiac resynchronization therapy for recurrent VT; 5) temporary or permanent pacemaker for patients with severe bradycardia(neonate: <55/min; children <40/min; in patients with CHD <70/min) or bradycardia dependent VT.

Cardiac transplantation for heart failure in children

Cardiac transplantation is done for end stage HF or for complex congenital heart diseases –like HLHS, failed Fontan surgery. This surgery is contraindicated in patients with primary or secondary PPH (PVRI more than 6 woods unit), HIV infection, chronic liver and kidney diseases.

The over-all survival 20 years after transplantation is 40%. The pediatric survival rate is 80% after 1 year and about 70% after 5 years. Late survival is limited by graft rejection, coronary allograft vasculopathy and infections.

Stem cell therapy

Much hyped, cardiac specific stem cell therapy is the most attractive but futuristic modality, in present. It would be an ideal alternative to cardiac transplant for those patients who are suffering from end-stage heart diseases. Potential indications for stem cell use in pediatric heart failure include creation of biological heart valves, tissue, engineered vessels, and biological pacemakers.

Points to Remember

- The clinical syndrome of HF may result from congenital or acquired disorders of the pericardium, myocardium, endocardium, heart valves, or great vessels or from certain metabolic abnormalities.
- The traditional decongestive and ionotropy-based management has been replaced by pharmacotherapy based on neurohumoral model of HF bringing in ACEi/ARBs/betablockers/levosimendan as the preferential drugs. The micro and macro-nutritional factors with anti-oxidant property are also related to better outcome.
- Very high doses of dopamine and dobutamine must be avoided and rather combination of inotropes must be preferred. Fluid challenges and diuretics must be used with monitoring of CVP and input and output charting.
- A meticulous effort has to be made to identify a correctable etiology a timely intervention may lead to complete recovery.
- Pulmonary artery banding in DCM is a new modality promised to be an effective alternative therapy.
- IVIG and immunosuppressant therapy have limited but beneficial use in some subsets of patients.
- Mechanical support and cardiac transplant therapy, are now available in India but cost is an issue and family counselling is very important.

References

6. Tandon R; Bedside approach in the diagnosis of congenital heart diseases; second edition; published by Sitaram Bharatiya institute o science and research 2009.

22. Mishra S. Khatri S. Congenital heart diseases and duct dependent circulation; chapter 5,84-97; In a comprehensive approach to congenital heart diseases; Editor in Chief-Dr IB Vijaylaxmi; Jaypee Publishers, 2013.

Effectiveness of Vaccination During Pregnancy to Prevent Infant Pertussis.

Immunization with the tetanus, diphtheria, and acellular pertussis (Tdap) vaccine is recommended for women during each pregnancy. This provides passive protection against pertussis to their infants. Although passive transfer of maternal antibodies can blunt the infant’s own immune response to infant doses of the diphtheria, tetanus toxoids, and acellular pertussis (DTaP) vaccine, it does not appear to interfere with clinical vaccine efficacy. In a retrospective study of nearly 150,000 infants at every level of DTaP vaccine exposure, infants exposed in utero to Tdap vaccine were better protected against pertussis during the first year of life than infants not exposed in utero. This study strongly supports the current recommendation to administer Tdap during each pregnancy.

CONGENITAL HEART DEFECTS - NONSURGICAL MANAGEMENT

*Snehal Kulkarni
** Tanuja Karande

Abstract: Structural heart defects in children are the most common congenital anomalies. Surgery was the only option until few years back. Today, therapeutic catheterization techniques have replaced conventional surgery for many lesions. The percutaneous transcatheter procedures may be broadly grouped as dilations (septostomy, valvuloplasty, angioplasty and endovascular stenting) or as closures (vascular embolization and device closure of defects). With improving hardware and increasing experience and expertise, more and more procedures are being performed with great degree of safety and efficacy. The major advantages of non surgical procedures are avoidance of thoracotomy, cardiopulmonary bypass and scar, along with a shortened period of hospitalization, less post-operative pain and recuperation period.

Keywords: Nonsurgical management, Cardiac defect, Congenital.

Most of the congenital heart defects are structural heart defects and need treatment to repair these defects. Previously cardiac surgery was the only option. Over the past decade, some of these defects can be repaired with nonsurgical or transcatheter treatment. These procedures are performed in cardiac catheterization laboratory under fluoroscopic guidance.

The field of catheter based interventions for congenital heart lesions spans nearly half a century with the Rashkind balloon atrial septostomy first performed in 1966. Interventional pediatric cardiology since then has come a long way and several lesions are now treated by minimally invasive transcutaneous route. These procedures are carried out on a beating heart under fluoroscopic guidance via transfemoral route and patient can be discharged the following day of the procedure without any scar. The pediatric cardiac interventions are given in Box 1.

Box 1. Pediatric cardiac interventions

1) Balloon atrial septostomy
2) Closure of shunt lesions:
 Atrial level - ASD device closure
 Ventricular level - VSD device closure
 Great vessel level - PDA closure, AP window device closure
3) Balloon dilatation of stenosed valves /
 Valvuloplasties
 Balloon aortic valvuloplasty
 Balloon pulmonary valvuloplasty
4) Balloon dilatation of (Angioplasties) / Stent placement in stenosed vessels
 For coarctation of aorta
 Branch pulmonary arteries
 Stenting patent ductus arteriosus in duct dependent lesions
5) Miscellaneous procedures
 Closure of coronary AV fistulae
 Hybrid procedures in operation theatre

ASD - Atrial septal defect; VSD - Ventricular septal defect; PDA - Patent ductus arteriosus; AP window - Aortopulmonary window

Balloon atrial septostomy (BAS)

The commonest neonatal intervention performed in the cardiac catheterisation laboratory still remains to be atrial septostomy. It is a life saving procedure and is classically required in babies with transposition of great vessels with intact inter ventricular septum. Most often the ductus arteriosus is inadequate for mixing of the oxygenated blood and an additional shunt in the form of atrial communication is necessary.
The procedure requires a venous access (femoral / umbilical vein) and an uninflated balloon is passed into the left atrium through patent foramen ovale. Then the balloon is inflated in the left atrium and pulled back into the right atrium with a controlled force. This forceful “jerk” allows an inflated balloon to open the restrictive atrial septum optimally (Fig.1). Conventionally, the procedure is performed in the catheterization laboratory under fluoroscopic guidance although, it can be safely performed in the neonatal intensive care unit under echocardiographic guidance. Because septal thickness increases with age, balloon atrial septostomy is effective only in infants less than 1 to 2 months of age. Complications are very less. Minor complications include rhythm disturbances.

Closure of shunt lesions

Atrial septal defect (ASD) device closure: Percutaneous closure is now the procedure of choice over surgical closure for majority of ostium secundum atrial septal defects in both children and adults, with experienced centres successfully closing over 80% of all ASDs in selected cases. It is carried out under general anesthesia mainly under transesophageal echocardiographic guidance. There are many devices currently available, and Amplatzer septal occluder was the first to receive FDA approval in December 2001. The device is made of nitinol (a metal alloy of nickel and titanium) wire mesh and consists of two discs with a connecting waist (Fig.2). Class I indication of ASD device closure as per AHA guidelines is ostium secundum ASD causing volume overload on the right side of the heart (RA and RV enlargement) with suitable anatomic features (adequate margins).

Contraindications for device closure includes ostium primum ASD, sinus venosus defects, very large ASDs with insufficient rims, active infection, contraindication to aspirin and associated other cardiac lesions which need surgical intervention. The limitations of the procedure is that it can be carried out only in select patients of secundum ASD with good rim margins. Complications of this procedure are device migration, device malposition, embolization, cardiac erosion leading to cardiac tamponade and rhythm disturbances.

Ventricular septal defect closure (VSD): VSDs account for 20-30% of all forms of CHD. The septum can be divided into 4 regions: membranous, inlet, trabecular and outlet. VSDs can be single in any of the mentioned regions or multiple (“Swiss cheese”) in the muscular part of the septum. Only small to moderate sized VSDs which are either muscular or perimembranous can be closed by...
transcatheter techniques. Most of the VSDs which are in the inlet or outlet location cannot be closed by this technique (Fig. 3 and 4).

Indications for VSD device closure: Children more than 5kg in weight and with favorable anatomy are considered candidates for percutaneous closure and adolescents with muscular small VSDs producing left heart volume overload. Some of VSDs can be closed in the operation theatre by hybrid technique (Fig. 4). Complications include device migration and embolization. There is a long term risk of complete heart block and aortic regurgitation after closure of perimembranous VSD and hence long term follow up is required to monitor these complications.

Patent ductus arteriosus closure: The incidence of isolated patent arterial duct in full-term infants is about 1 in 2000 live births, accounting for approximately 10% of all types of congenital heart disease. Occlusion of the PDA was first described in 1971 with an Ivalon plug.5 Transcatheter closure of PDA has become a standard practice of closure of PDA in children. Surgery is required in very small neonates and very large PDAs. Small PDAs (<2mm) are easily closed with stainless-steel Gianturco coils. Larger PDAs are closed with the duct occluder devices, which are mushroom-shaped devices with a nitinol frame and filled with an occlusive polyester fabric mesh. This device is delivered from the venous approach placing the ‘hat’ in the aortic ampulla and the ‘stem’ in the PDA itself (Fig. 5). Closure rates are virtually 100% for PDAs up to 10mm and complications are rare.

Indications for PDA device closure: Transcatheter PDA occlusion is indicated for the treatment of a moderate-sized or large PDA with left-to-right shunt that results in any of the following - congestive heart failure, failure to thrive, pulmonary over circulation (with or without pulmonary hypertension), or an enlarged left atrium or left ventricle, provided the anatomy and patient size are suitable.

Balloon dilatation of stenosed valve

Balloon aortic valvuloplasty: Bicuspid aortic valve with severe valvular stenosis is a common emergency in neonates and small infants. Valvular aortic stenosis is a progressive disease usually requiring multiple interventions. Balloon aortic valvuloplasty is the procedure of choice in severe valvular aortic stenosis. The procedure is usually performed from a retrograde approach via a femoral artery. Detailed echocardiography is required prior to the procedure for measurement of aortic valve annulus, assessment of left ventricular function and associated lesions like coarctation of aorta.

Indications are based on the gradients across the valve and ventricular function. But it is indicated regardless of valve gradient in the newborn with isolated critical valvular AS who is ductal dependent or in children with isolated valvular AS and depressed left ventricular systolic function. In children it is indicated with isolated valvular AS who have a resting peak systolic valve gradient (by catheter) of >50 mm Hg or peak systolic valve gradient (by catheter) of >40 mm Hg if there are symptoms.

Balloon dilation provides excellent palliation for most children with congenital valvular AS though it cannot be considered curative as valve restenosis or significant valve regurgitation eventually necessitates the need for rebalooning or surgical intervention in 20-30% of cases. Complications include possibility of injury to femoral artery and with use of larger sized balloon aortic regurgitation can happen.

Balloon pulmonary valvuloplasty: Balloon valvuloplasty remains the treatment of choice for valvular pulmonary stenosis in patients of all ages and has almost replaced surgery. Restenosis after balloon dilation is rare, with few children ever requiring repeat dilation. The indications for balloon therapy is a transvalvular echocardiographically determined gradient of >50 mm Hg with normal cardiac output. The subgroup of patients with thickened, dysplastic pulmonary valves, as commonly seen in Noonan syndrome, has however shown a lower success rate with balloon valvuloplasty.6

Balloon pulmonary valvuloplasty is a relatively safe procedure and is the first
line of management in cases with severe valvular PS (Fig.6). Recently, modified catheterization techniques have been developed for treatment of newborns with pulmonary atresia and intact ventricular septum. The atretic membranous valve can be perforated with a wire or with a hot tipped catheter using laser or radiofrequency energy. Once perforated, the valve is balloon dilated to create unobstructed continuity between the right ventricle and pulmonary artery.

Balloon dilatation/stent placement of stenosed vessels

Balloon dilatation of coarctation of aorta: Coarctation of the aorta (CoA) is a common form of CHD, accounting for 6% to 8% of all cardiac defects. The prevalence of coarctation is increased in certain disorders, such as Turner syndrome. The most common associated cardiac anomaly is bicuspid aortic valve, which is present in 30% to 40% of all cases. The usual location of coarctation is juxtaductal, just distal to the left subclavian artery. Neonates with coarctation of the aorta may present with signs and symptoms of low cardiac output and shock once the ductus arteriosus closes. Older infants and children may present with hypertension, headaches and claudication. For native coarctation of the aorta, initially, surgical repair (extended resection with an end-to-end anastomosis) has been the primary treatment at most centers and remains the “gold standard” therapeutic option especially for neonates and small infants. Balloon angioplasty is usually indicated in older children above the age of one year and for restenosis after surgical repair.

Balloon dilatation with stent implantation: Common indications for stent deployment in CHD include treatment of obstructive lesions of the branch and peripheral pulmonary arteries, systemic veins, aorta and its branches, right ventricular outflow tract (RVOT) conduits and maintenance of patency of the arterial duct in duct-dependent circulation. Most of these vessels are elastic structures and there is a tendency of recoil after balloon dilatation. Stents keep the narrowed vessels open.

The largest pediatric experience is with stenting of congenital or postoperative branch pulmonary artery stenoses. These lesions are difficult if to access surgically and the rate of restenosis after attempted surgery has been high. Stent repair of CoA may be useful in preventing restenosis and aneurysm formation seen after surgery or balloon angioplasty (Fig.7). A large delivery sheath is required for implanting the majority of stent diameters. This may cause vascular complications, which is of major concern when implanting a stent (via the femoral artery) to treat CoA.

Hybrid procedures

Hybrid pediatric cardiac surgery is an emerging field that combines skills and techniques used by pediatric cardiac surgeons and interventional pediatric cardiologists. Both surgery and transcatheter approaches have limitations if performed independently. The invasive nature of surgery and long cardiopulmonary bypass time have potential developmental implications when done at a very young age. Transcatheter approaches may be limited by access, patient size, and related issues. It is often not physically possible to deliver the required devices intravascularly through relatively large delivery sheaths that are difficult to negotiate around the curves of the heart. Therefore, it is not surprising that surgeons and interventionalists have increasingly started working together to maximize the potentials and minimize the limitations of their respective approaches. It is in this setting that the “hybrid” approach to CHD has evolved. This type of collaboration provides the interventionalist and surgeon with direct access to the heart and may help patients avoid the need for cardiopulmonary bypass. Currently hybrid approach is used in hypoplastic left heart syndromes, periventricular VSD closure and pulmonary valve implantation.

Conclusion

Pediatric cardiac intervention is a rapidly advancing field with several new procedures replacing some of the simpler surgeries. Advances in interventional hardware has improved the potential of interventions in neonates.
Points to Remember

- Pediatric cardiac intervention is a rapidly advancing field with several new procedures replacing some of the simpler surgeries in congenital heart defects.
- A mainstay of interventional congenital cardiology is the use of transcatheter balloon dilation and stenting to relieve vascular stenoses and closure of shunts using various FDA approved devices.
- Hybrid pediatric cardiac surgery is an emerging field that combines skills of pediatric cardiac surgeons and interventional pediatric cardiologists.

References

NEWS AND NOTES

CME on Common Office Practice Pediatric Problems (COPP)

(A Module of IAP Tamilnadu State Chapter)

Organised by IAP-CCB in association with IAP, Tamilnadu State Chapter

“Block your date for this academic extravaganza”

Date: 29th October, 2017 (Sunday) - Chennai

For further information contact
Dr.Somasundaram,
Mobile: 9841676097,
Email: drsoma2001@yahoo.com
CARDIOGENIC SHOCK

*Arpita Chattopadhyay
**Rakesh Lodha

Abstract: Cardiogenic shock is defined as a state of acute circulatory failure, leading to reduced cardiac output that is unable to meet the metabolic demands of the body. Apart from congenital heart diseases, other causes of acute heart failure such as primary or secondary cardiomyopathy, several metabolic, infectious and medications or toxin related etiologies may present as cardiogenic shock. Management involves fine tuning oxygen consumption and delivery variables by titrating inotropes, vasopressors, mechanical ventilation and in some cases extra corporeal membrane oxygenation. This article summarizes the pathophysiology, diagnosis and management of a pediatric patient presenting with cardiogenic shock.

Keywords: Cardiogenic shock, Myocarditis, Cardiac output, Systolic heart failure.

Cardiogenic shock is a state of acute circulatory failure with end organ hypoperfusion due to low cardiac output. The diagnosis is established mainly on clinical examination with the following features:

i) Sustained hypotension (<5th percentile for age) or need of vasopressors to maintain blood pressure above 5th percentile for age.

ii) Signs of pulmonary congestion – due to elevated left ventricular end diastolic pressure.

iii) Evidence of end organ hypoperfusion - cold and clammy peripheries, altered mental status, oliguria and elevated serum lactate.¹

Epidemiology

Population studies from the United States reported admission rates for pediatric heart failure of 17.9 per 100,000 children in 2006. Of these, congenital heart diseases (CHD) comprised 69.3% of total admissions for heart failure, while cardiomyopathy, myocarditis and arrhythmias comprised admission rates of 13.6, 2.1 and 15.2%, respectively. Further 2.8% of patients admitted with heart failure underwent extra corporeal membrane oxygenation (ECMO), while 0.8% required ventricular assist device (VAD).² Studies from India on prevalence of cardiogenic shock among children presenting with shock are few. Of the few studies, a study conducted in Punjab in 2006,³ showed that cardiogenic shock constituted 17% of the total cases of shock. Among these cases, CHD was most common cause (53%) followed by cardiomyopathy (23.5%) and heart rate abnormalities (23.5%). Mortality in patients with cardiogenic shock was 57%. Although mortality depends upon the etiology of shock, it increases in the presence of co-morbidities (acute kidney injury, liver failure or sepsis) by up to five times.⁴

Etiology

Etiology of cardiogenic shock in children is given in Box 1.

Pathophysiology

Depending on the underlying etiology, patients in cardiogenic shock have low cardiac output either due to impaired filling/diastolic dysfunction or impaired emptying / systolic dysfunction or both.⁵

Infants and children with heart failure primarily increase cardiac output by increasing heart rate due to small ventricular mass resulting in inability to make appreciable changes in contractility [Cardiac output (CO) = Heart rate (HR) X Stroke volume (SV)]. Determinants of stroke volume are preload, afterload and contractility. The clinical application of Frank Starling’s relationship, which describes how with an increased ventricular filling during diastole (venous return), the ventricular fiber length increases, which in turn increases the ventricular contraction and thus the stroke volume helps to titrate preload.⁶
Impaired myocardial relaxation due to diastolic dysfunction leads to increased ventricular diastolic pressure which is transmitted to the lung and results in pulmonary edema and dyspnea. Such children are in heart failure often with normal systolic ventricular function. Subendocardial ischemia may also develop due to decreased myocardial perfusion pressure as a result of elevated left ventricular end diastolic pressure (e.g. left ventricular hypertrophy due to long standing hypertension).

The goal of treatment is by manipulating Frank Starling law physiology so as to titrate preload and afterload, such that ventricle remains on the flat portion of its pressure-stroke volume (SV) curve. If it falls on the steep portion of its function curve, SV and CO will decrease, patient will be preload responsive (with a stroke volume deficit) or have excessive LV end diastolic volume (myocytes stretched beyond their ability to generate force) culminating in heart failure. Thus, an adequate ventricular filling pressure is essential so as to maintain SV and CO.

Clinical signs

According to Dr. Lynne Warner Stevenson’s concept, patients in cardiogenic shock may present either with signs of congestion at rest such as orthopnea, raised jugular venous pressure (JVP), edema and basal crepitations and or signs of hypoperfusion at rest (cold clammy extremities, tachycardia, narrow pulse pressure, altered mental status and reduced urine output). Children in cardiogenic shock often enter a vicious cycle of neurohormonal activation to compensate for poor cardiac output, leading to increase in systemic vascular resistance, further deteriorating contractility and pump function. Based on the findings they may fit in any of the four categories (Fig.1).

| Cold and wet: Presence of evidence of hypoperfusion due to impaired myocardial contractility and congestion due to increased left ventricular filling pressure (systolic and diastolic dysfunction). |
| Cold and dry: Critical hypoperfusion with impaired myocardial contractility and low left ventricular filling pressure (systolic dysfunction). |
| Warm and wet: Normal myocardial contractility but high left ventricular filling pressure due to impaired myocardial relaxation (diastolic dysfunction). |
| Warm and dry: Normal state or seen in compensated heart failure. |

Box 1. Cardiogenic shock - Etiology

<table>
<thead>
<tr>
<th>Congenital heart disease</th>
<th>Cardiomyopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoplastic left heart syndrome</td>
<td>Glycogen storage disease</td>
</tr>
<tr>
<td>Aortic stenosis</td>
<td>Carnitine deficiency</td>
</tr>
<tr>
<td>Coarctation of Aorta</td>
<td>Hypothyroidism</td>
</tr>
<tr>
<td>Anomalous left coronary artery from pulmonary artery (ALCAPA)</td>
<td>Mucopolysaccharidosis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rhythm abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supraventricular tachycardia</td>
</tr>
<tr>
<td>Ventricular tachycardia</td>
</tr>
<tr>
<td>Bradyarrhythmias</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug induced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anthracyclines</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ischemia re-perfusion injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-operative state</td>
</tr>
<tr>
<td>Post cardiac arrest state</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metabolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypocalcemia</td>
</tr>
<tr>
<td>Acidosis</td>
</tr>
<tr>
<td>Hypothermia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neuromuscular disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duchenne muscular dystrophy</td>
</tr>
<tr>
<td>Myotonic dystrophy</td>
</tr>
<tr>
<td>Spinal muscular dystrophy</td>
</tr>
<tr>
<td>Friedreich’s ataxia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cardiac tamponade</th>
</tr>
</thead>
</table>
Monitoring

Heart rate and rhythm: Continuous monitoring of heart rate and rhythm is essential as it gives valuable clues to patient’s preload, ventricular function and cardiac output. A thorough knowledge of rhythm disturbances expected to be seen with certain cardiac surgeries, congenital heart lesions or drug toxicity helps guide treatment.

Systemic arterial blood pressure: Indwelling arterial catheters are considered as part of essential monitoring in patients with cardiogenic shock. A wide pulse pressure points to aortic run off lesions (aortic regurgitation) while a narrow pulse pressure suggests low stroke volume or increased tone of vessels. Also arterial lines are used to guide titration of vasopressors in patients with cardiogenic shock.

Central venous pressure (CVP): This is an index of preload reserve in a patient and can be used to titrate fluid therapy. Monitoring CVP is also a standard of care in patients with right heart failure or in those having episodes of pulmonary hypertensive crises.

End tidal CO₂ monitoring: Monitoring the concentration of expired CO₂ as a measure of tissue CO₂ production, alveolar ventilation and state of pulmonary blood flow, is a helpful adjunct to standard monitoring in patients with cardiogenic shock. Usually there is a negligible difference between sampled arterial CO₂ (PaCO₂) and the end tidal CO₂ level (ETCO₂) in capnography in normal subjects. However, in states of ventilation perfusion mismatch, wasted ventilation leads to creation of a significant arterial to end tidal CO₂ gradient and is a reliable marker of reduced venous return, pulmonary blood flow and thus cardiac output.

Serum lactate: Serial lactate levels are reflective of metabolic demand- oxygen delivery balance and evidence of cellular hypoxia. Both hypoxic and non-hypoxic causes of hyperlactatemia (post cardiac bypass, liver dysfunction) need to be considered while interpreting the results. A normal lactate level is taken as 1-2 mmol/L.

Venous oximetry: Venous oximetry is an earlier marker of a fall in cardiac output and oxygen delivery than serum lactate levels. According to the Fick principle, with a decrease in oxygen delivery to the tissues, the arterio-venous oxygen content difference increases due to an increase in oxygen extraction. When oxygen delivery drops below a critical threshold, such that an increase in oxygen extraction can no longer fully compensate for decreased oxygen delivery, anaerobic metabolism results with elevated serum lactate levels.

\[\text{Oxygen extraction ratio (O2ER)} = \frac{\text{SaO}_2 - \text{ScvO}_2}{\text{SaO}_2} \] where SaO₂ and ScvO₂ are arterial and central venous oxygen saturations, respectively. The normal O₂ER is 25%-30% and as it rises above 50-60%, anaerobic metabolism begins.

Near-infrared spectroscopy (NIRS): NIRS provides continuous noninvasive organ-specific perfusion monitoring by analyzing the absorption and scatter of near infrared light. It measures regional tissue oxygenation and perfusion by approximating regional venous saturation and in combination with arterial oxygen saturation allows for the estimation of regional oxygen balance. Thus, NIRS guides titration of organ-specific goal-directed treatments.

Fluid balance: Patients in shock, irrespective of etiology, present with both global hemodynamic derangement as well as microcirculatory abnormalities. This is further amplified in cardiogenic shock patients who develop a systemic inflammatory response syndrome (SIRS) due to SIRS-related vasodilatation and the resulting hypotension. Fluid resuscitation which may lead to restoration of global circulation; does not correct the microcirculatory abnormalities. In fact, excessive administration of fluids to restore global circulation can lead to edema which causes further deterioration of microcirculatory function.

Fig.1. Table for bedside assessment and early recognition of pathophysiological state in cardiogenic shock

<table>
<thead>
<tr>
<th>Congestion at rest</th>
<th>Warm and wet</th>
<th>Cold and wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Warm and dry compensated HF</td>
<td>Cold and dry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hypoperfusion at rest</td>
</tr>
</tbody>
</table>

38
Biomarkers: Serial values of Troponin I, CPK-MB, BNP, ProBNP may be monitored.¹⁰

Echocardiography

Assessment of cardiac output: CO is calculated by multiplying the stroke volume (SV) by the heart rate (HR). The measurement of stroke volume (SV) and thus cardiac output (CO) is conventionally, made at the left ventricle outflow tract (LVOT). From the parasternal long axis (PLAX) view, the LVOT diameter is measured immediately below the hinge point of the aortic valve leaflets. The cross sectional LVOT area (cm²) is calculated from this diameter measurement using the formula:¹⁶

\[
\text{LVOT area (cm}^2\text{) = (LVOT diameter/2)}^2 \times 3.14
\]

Next, the pulse wave doppler (PWD) sample volume is placed in the LVOT to measure the systolic velocity envelope of blood flow in the LVOT, using the five chamber apical view. The velocity time integral (VTI) can be derived from the PWD measured at the LVOT. This allows measurement of SV by formula:¹⁶

\[
\text{SV (cm}^3\text{ or mL) = LVOT area (cm}^2\text{) X VTI (cm)}
\]

Assessment of LV function: Measurement technique: LV function can be assessed both qualitatively and quantitatively. Qualitative measurement is a visual estimate (simply ‘eyeballing’) of overall LV function by the clinician who examines the global and focal contractile function of the LV in the parasternal long-axis (PLAX), parasternal short-axis (PSS) views, the apical four chamber (AP4) view, or the subcostal (SC) view using 2D echocardiography. It is usually graded as mildly, moderately and severely reduced or normal.¹⁶ Depending upon the experience of the clinician, these estimations are fairly reliable. For quantitative assessment several methods are used namely:

a. The biplane Simpson’s method – It is a 2D method and calculates a volume by delineating the end systolic and end diastolic area by careful tracing and perfect long axis orientation in apical four chamber or two chamber views.¹⁷

b. Fractional shortening method (FS Method) – Measurements of the LV end systolic (ESD) and end diastolic diameter (EDD) in the M mode, right below the mitral valve leaflet perpendicular to long axis of heart, in the parasternal short or long-axis views to obtain the fractional shortening, which is calculated using the formula:¹⁷

\[\text{FS} = (\text{EDD} – \text{ESD})/(\text{EDD}) \times 100\]

Assessment of RV Function: LV dimensions are larger than RV dimensions typically. Hence by observing a ‘D – shaped’ LV where RV is larger than LV with leftward shift of interventricular septum points toward RV volume/pressure overload. Paradoxical motion of the septum visualized as a bounce of the septum or movement of the septum toward the left ventricle during ventricular contraction is also a feature of RV pressure/volume overload.¹⁶

Treatment of acute heart failure syndromes (Fig.2)

Mainstay of treatment is a careful balance of oxygen delivery and consumption variables. Treatable causes should be urgently addressed such as pericardial tamponade, pneumothorax, arrhythmias, dyselectrolytemia, or fluid overload. The broad principles of management of acute heart failure syndromes (AHFS) are given below.

1. Oxygen delivery optimization is done by ensuring adequate gas exchange, supporting ventilation mechanically, preload restoration, afterload relaxation. Oxygen consumption optimization is ensured by taking charge of work of breathing, fever control, pain /anxiety control.

2. Fluid resuscitation should preferably be done after echocardiographic evaluation. If patient appears fluid overloaded, gentle loop diuretic infusion may be started once the patient is out of shock.

Dobutamine: By acting on the beta-1 receptors, increases cardiac contractility thus increasing cardiac output (CO) and decreases the pulmonary capillary wedge pressure (PCWP) by vasodilating arterial resistance and venous capacitance vessels (a beta 2 receptor effect).¹⁸

Dopamine: It also has beta-1 and beta-2 receptor activity, also acts on alpha 1 receptors increasing systemic vascular resistance (SVR) and CO. But the PCWP increases significantly.¹⁹ Hence, dopamine is not preferred in patients with cardiogenic shock.

Epinephrine: In low doses (< 0.05–0.10 µg/kg/min) reduces SVR, while at higher doses, SVR increases considerably. At all doses, epinephrine causes venoconstriction, and provides greater inotropic support than dopamine or dobutamine.¹⁹

Inotropic agents are arrhythmogenic and should be used at the lowest possible dose and for the shortest
duration, given that all increase myocardial oxygen consumption, except levosimendan, and milrinone.

Milrinone: An inodilator, is commonly administered to children with acutely decompensated heart failure with the aim of decreasing SVR, PVR, lusitropy and augmenting myocardial systolic and diastolic function. Milrinone increases intracellular cyclic adenosine monophosphate levels by inhibiting phosphodiesterase III. It also enhances coronary venous flow thus favoring myocardial energetics reflected by a decrease in the myocardial arteriovenous oxygen content difference.

Norepinephrine: Increases SVR even at very low doses and is used to maintain perfusion pressure. It is the preferred vasopressor in combination with inotropes to increase SVR, perfusion pressure and to maintain blood pressure. However, it should be replaced with epinephrine in cases of inotrope resistant shock.

Dobutamine is still considered preferred drug, followed by Milrinone (dose range – 0.5 -0.75 μg/kg/min) especially in patients who have undergone cardiac surgery, cases of impaired right ventricle function and/or pulmonary hypertension.

Newer inotropic agent: Levosimendan, which is a calcium sensitizer causes enhanced inotropy without increasing myocardial oxygen consumption. Experience in children is still limited. Nitrated derivatives and â blockers are not recommended in patients with cardiogenic shock.

Fig. 2. Approach to management of cardiogenic shock
4. Immunomodulatory treatment in myocarditis: Myocarditis is an inflammation of myocardium due to varied causes resulting in degenerative/necrotic changes manifesting as varying levels of myocardial dysfunction. The most common etiology is viral mediated, but may also be caused by bacteria, protozoa, autoimmune disorders or drug reactions. The various treatment options are as follows:

Corticosteroids: Eight RCTs (including both adult and pediatric studies, n = 719) analysed in a Cochrane review of corticosteroid use, found no difference in mortality in the corticosteroid groups and the control groups. Notably, the corticosteroid group had a higher left ventricular ejection fraction (LVEF) and a decrease in cardiac biomarker (creatinine kinase MB) but these studies were considered as low quality with small sample size. Corticosteroids have been used in patients with myocarditis in doses of 0.5-2 mg/kg/d divided 1-4 times per day.

IV Immunoglobulin: Though none of the studies show a mortality benefit, some studies did show an improvement in left ventricle end diastolic volume and ejection fraction. A dose of 2 g/kg/day has been used most commonly in all studies.

5. Mechanical circulatory support (MCS) is indicated in refractory low cardiac output state not responding to conventional therapy. It is practically not feasible to prolong ECMO support beyond 2 weeks and hence, MCS devices help as bridge to transplantation. The various ventricular assist devices available are pulsatile pump (Berlin Heart EXCOR) and continuous flow pump (SynCardia, Thoratec). There are several device selection strategies depending upon whether MCS is temporary or for long term, also depending on weight of the baby. The discussion of VAD is beyond the scope of this chapter.

6. ECMO: This is indicated in cardiac arrest persisting for 15 minutes or beyond but less than 60 minutes. In patients refractory to conventional management, ECMO is indicated as a bridge to transplant.

Conclusion

Children presenting with cardiogenic shock require intensive monitoring and titration of therapy to optimize stroke volume, contractility and reduce afterload. In the patients with severely reduced cardiac output refractory to medical management, ECMO and ventricular assist devices are available options.

Points to Remember

- **Cardiogenic shock is a state of acute circulatory failure due to low cardiac output.**
- **Diagnosis is mainly based on hypotension, signs of pulmonary congestion and features of end organ hypoperfusion.**
- **Management is by optimising oxygen consumption and by titrating inotropes and vasopressors.**

References

Early, Goal-Directed Therapy for Septic Shock - A Patient-Level Meta-Analysis.

After a single-center trial and observational studies suggesting that early, goal-directed therapy (EGDT) reduced mortality from septic shock, three multicenter trials (ProCESS, ARISE, and ProMiSe) showed no benefit. This meta-analysis of individual patient data from the three recent trials was designed prospectively to improve statistical power and explore heterogeneity of treatment effect of EGDT.

This meta-analysis harmonized entry criteria, intervention protocols, outcomes, resource-use measures and data collection across the trials and specified all analyses before unblinding. After completion of the trials, we pooled data, excluding the protocol-based standard-therapy group from the ProCESS trial, and resolved residual differences. The primary outcome was 90-day mortality. Secondary outcomes included 1-year survival, organ support and hospitalization costs. We tested for treatment-by-subgroup interactions for 16 patient characteristics and 6 care-delivery characteristics.

In this meta-analysis, 3723 patients at 138 hospitals in seven countries were studied. Mortality at 90 days was similar for EGDT (462 of 1852 patients [24.9%]) and usual care (475 of 1871 patients [25.4%]); the adjusted odds ratio was 0.97 (95% confidence interval, 0.82 to 1.14; P=0.68). EGDT was associated with greater mean (±SD) use of intensive care (5.3±7.1 vs. 4.9±7.0 days, P=0.04) and cardiovascular support (1.9±3.7 vs. 1.6±2.9 days, P=0.01) than was usual care; other outcomes did not differ significantly, although average costs were higher with EGDT. Subgroup analyses showed no benefit from EGDT for patients with worse shock (higher serum lactate level, combined hypotension and hyperlactatemia, or higher predicted risk of death) or for hospitals with a lower propensity to use vasopressors or fluids during usual resuscitation.

In this meta-analysis of individual patient data, EGDT did not result in better outcomes than usual care and was associated with higher hospitalization costs across a broad range of patient and hospital characteristics.

EXTRA CORPOREAL MEMBRANE OXYGENATION

*Rajakumar PS

Abstract: Extracorporeal membrane oxygenation (ECMO) is a modified cardiopulmonary bypass technique which provides temporary support in severe respiratory and/or cardiac failure due to any reversible cause. Venoarterial ECMO supports both heart and lung function while venovenous ECMO supports lung function alone. Different methods and sites of cannulation are available. Anticoagulation, good intensive care focusing on lung and heart rest, specific therapy for the underlying disease, prevention of infection and meticulous monitoring are essential for the organs to recover before weaning and decannulation are done. Awareness of indications and contraindications is important as patient selection and timing of initiation are crucial for success.

Keywords: Extra corporeal membrane oxygenation, Veno venous ECMO, Veno arterial ECMO, Extra corporeal life support.

Extra corporeal membrane oxygenation (ECMO) is a modified form of cardiopulmonary bypass technique to temporarily support lung and/or heart function and ensure adequate oxygen delivery in severe reversible respiratory and/or cardiac failure due to any etiology. Patient selection and timing of initiation are very crucial since ECMO is only a supportive therapy to sustain life while waiting for various therapeutic interventions and natural course to help the organs to recover and the disease to resolve.

The first successful neonatal ECMO was reported by Robert Barlett from University of Michigan, USA in 1975 in a baby with severe meconium aspiration syndrome and primary pulmonary hypertension (PPHN). Soon this technology was extended to other indications and older children as ultimate rescue therapy. This was supported by studies in newborns in both USA and UK. Extracorporeal Life Support Organisation (ELSO) was established in 1989 to propagate the knowledge, collect epidemiological data on use and outcome of ECMO across the world. The growth of ECMO in India has been slow due to the high cost involved and the need for both good cardiothoracic surgery unit and intensive care expertise. The number of centres in India offering ECMO in children and newborns have increased significantly in the recent years due to availability and affordability, with simultaneous improvements in technology.

Basic technology

ECMO technology was developed by modifying the cardio pulmonary bypass (CPB) machine and circuit to suit prolonged extracorporeal therapy and minimize the complications.

ECMO components (Fig.1)

1) Drainage (Access) cannula - Large cannula for draining blood from one of major veins or right atrium.

2) ECMO circuit - Special circuit for blood circulation outside body with safety mechanism to prevent air embolism and minimise activation of clotting and systemic inflammatory responses. It is primed with crystalloid, colloid or blood.

3) Pump (Heart) - To drain blood via access cannula and pump it through the ECMO circuit and back to body via another cannula (return Cannula). The most common type used now is centrifugal pump while roller pump is used in CPB machine. The centrifugal pump consists of mechanism of spinning impellar blades or rotating cones which have a vortex like action to create negative pressure on one side (pre-pump) to draw blood from patient and positive pressure on other side (post-pump) to propel blood via membrane back to patient.

4) Membrane oxygenator (Lung) - A special gas permeable membrane separating blood and gas flow which adds oxygen to blood and removes carbon dioxide from blood by diffusion before returning it to the patient. The most common type used now is microporous membrane with hollow fibres made of polymethylpentene (PMP).
5) Blender with oxygen and air supply and flow meter - To supply gas flow to oxygenator.

6) Heater unit - With water hose which helps to maintain blood temperature to set value of 37°C or lower (for therapeutic hypothermia) by heat exchange across membrane.

7) Return cannula - To return blood to great vein or right atrium (Veno Venous ECMO) or any great artery (Veno Arterial ECMO). Sometimes large double lumen cannula (eg Avalon) are used for both drainage from vena cava and return into right atrium.

8) Monitoring devices - Help to detect any problems in circuit flow, membrane function and mechanical kinks. They include (a) Inlet pressure monitoring at inflow limb of circuit (pre-pump) to detect preload, (b) pre membrane and post membrane pressure monitoring transducers (post pump) - To detect oxygenator clots and return cannula kinks/ increased afterload and (c) mixed venous saturation and blood flow monitoring devices - to monitor oxygenator and pump function.

Types of ECMO

1. **Veno venous ECMO (VV ECMO)** - Venous blood is accessed from the large central veins, pumped through the oxygenator and returned to the venous system near the right atrium. It provides support for severe respiratory failure (eg. ARDS) where the circulation is driven entirely by native cardiac function.

2. **Veno arterial ECMO (VA ECMO)** - Venous blood is accessed from the large central veins, pumped through the oxygenator and returned to the systemic arterial system in

Fig.1. ECMO components and basics

- Venous blood is drained from a central vein via a drainage cannula, pumped through an oxygenator, and returned to a central vein through a separate reinfusion cannula. (Source: Abrams D, Brodie D. Extracorporeal circulatory approaches to treat ARDS. Clin Chest Med 2014; 35(4): 765-779).

Fig.2. Different ECMO configurations

A: venous-venous cannulation - deoxygenated blood drained from femoral vein and oxygenated blood returned to right atrium, B-D: various venous-arterial configurations

Blue: intravascular and intracardiac deoxygenated blood

Red: intravascular oxygenated blood

Dark red: intravascular and intracardiac mixed oxygenated and deoxygenated blood

the aorta. It provides support for severe cardiac failure (with or without associated respiratory failure) due to heart disease or post cardiac arrest.

Types of cannulation/configurations

Central cannulation - Superior vena cava/right atrium and ascending aorta are directly cannulated for VA ECMO with chest kept open. This is usually done following open heart surgery when there is difficulty in weaning off bypass or other situation where peripheral cannulation is not possible or very large blood (ECMO) flow is required.

Peripheral cannulation - Internal jugular vein (IJV) or femoral vein and carotid artery or femoral artery are used for cannulation. Femoro-femoral VV ECMO and VA ECMO are commonly used in older children, Femoral vein - IJV VV ECMO in smaller children and IJV-carotid VA ECMO in newborns and infants (Fig. 2). Cannulation of the femoral vessels in infants is not possible because the small size of the vessels does not allow implantation of cannulae large enough to achieve full ECMO flow. A heparin bolus of 50-100 IU/kg and one dose of prophylactic antibiotic (cefazolin) is administered prior to inserting the cannulae.

Method of cannulation

There are three methods of cannulation:

(a) Percutaneous cannulation - Done in older children under ultrasound guidance via Seldinger technique,

(b) Open surgical cannulation - Done in smaller children and in difficult cases by exposing the vessel, making an incision in vessel and directly cannulating and

(c) Semi Seldinger cannulation - Where incision is made in skin to expose the vessel which is then cannulated by Seldinger technique without incision in vessel.

The indications for initiating ECMO is given in Box 1 while the contraindications are given in Box 2.

Criteria for initiating ECMO

1. The clinical condition should be a potentially reversible cardiac or respiratory failure or both. Mechanical ventilation with high pressures and FiO2 for more than 7 to 10 days is considered a relative contraindication as injury may be irreversible.

2. The patient should be sufficiently sick with high expected mortality with conventional therapy. This can be assessed by following objective parameters:

 i) Respiratory failure:
 - Oxygenation index (OI) > 40 for > 4 hours

 ii) Cardiac (VA ECMO) - Neonatal and pediatric
 Failure to wean from cardiopulmonary bypass (after congenital heart surgery)
 Myocarditis
 Cardiomyopathy (bridge to transplant or Left Ventricular Assist Device (LVAD)
 Refractory sepsis with profound cardiac depression
 Refractory cardiac arrhythmias
 Cardiac arrest from any treatable cause (Extracorporeal cardiopulmonary resuscitation - ECPR*)
 Elective peri-procedural support (Airway surgery)

 *ECPR is defined as the provision of an artificial circulation using the pumping of blood from a femoral venous catheter through an oxygenator into a femoral arterial catheter as an alternative to ventilation and external cardiac massage.

Box 1. ECMO indications

i) Respiratory (VV ECMO, neonates sometimes VA ECMO)
 Neonatal
 Meconium aspiration syndrome
 PPHN
 Diaphragmatic hernia
 RDS
 Pneumonia

Pediatric
 Viral pneumonia
 Bacterial pneumonia
 ARDS
 Aspiration pneumonia
 Asthma

ii) Cardiac (VA ECMO) - Neonatal and pediatric
 Failure to wean from cardiopulmonary bypass (after congenital heart surgery)
 Myocarditis
 Cardiomyopathy (bridge to transplant or Left Ventricular Assist Device (LVAD)
 Refractory sepsis with profound cardiac depression
 Refractory cardiac arrhythmias
 Cardiac arrest from any treatable cause (Extracorporeal cardiopulmonary resuscitation - ECPR*)
 Elective peri-procedural support (Airway surgery)

Box 2. Contraindications for ECMO

1. End-stage disease
2. Untreatable underlying disease and congenital malformations
3. Significant neurological impairment, genetic abnormalities (e.g. trisomy 13 and 18)
4. Severe, irreversible organ dysfunction
5. Prematurity (gestational age <34 weeks), weight <2 kg
6. Severe coagulopathy or contraindication for anticoagulation
- Oxygenation index >20 (or P/F ratio < 100) with lack of improvement despite prolonged (>24 hour) maximal medical therapy or persistent episodes of decompensation

- Progressive respiratory failure and/or pulmonary hypertension with evidence of right ventricular dysfunction or continued high inotropic requirement

ii) Cardiac failure:
- Significant shock despite adequate inotropes
- Post cardiac arrest (ECPR: ECMO application during CPR)
- Failure to wean of cardiopulmonary bypass (CPB)

3. The neurologic status and other organ function should be consistent with possibility of reasonable recovery.

4. There should be no contraindication for limited heparinization. Prematurity less than 35 weeks, intracranial bleed or refractory coagulopathy are contraindications.

Patient management on ECMO (Table I)

Ventilation - kept at lung protective rest settings with PEEP 10, pressure control 10, rate 10 with inspiratory time of 1 sec with FiO2 21% to 50%. This ensures lung is kept open without exposure to high pressure and oxygen so that ventilator induced lung injury is minimized.

Circulation - In VA ECMO, inotropes can be tapered off quickly and restarted only before weaning off ECMO. Hemodynamics is maintained by adjusting ECMO flow. In VV ECMO on patient with secondary cardiac dysfunction, inotropes can be tapered slowly as myocardium recovers with improvements in oxygenation. As centrifugal ECMO pump is non-occlusive, preload and afterload dependent, adequate blood volume and good vasodilation and absence of circuit/ cannula kinking are required for achieving good blood flow and oxygenation.

Fluid management - Initially more fluids may be needed as there is systemic inflammatory response syndrome (SIRS) response due to ECMO circuit. Later it will be necessary to get the child dry with diuretics or filtration to facilitate weaning.

Analgesia and sedation - Should be adequate with usually a combination of opioids and benzodiazepine for patient comfort and prevention of accidental decannulation.

Nutrition - Enteral nutrition with nasogastric tube can usually be initiated and maximised, if there is no contraindication.

Renal support - Can be initiated with continuous renal replacement therapy via ECMO circuit for fluid management or overt renal failure.

Table I. ECMO settings and monitoring

<table>
<thead>
<tr>
<th>ECMO blood flow</th>
<th>Newborn 100 ml/kg/min; Children 80 ml/kg/min; 50-80% of the flow may be enough; Determines hemodynamics in VA ECMO and oxygenation in both</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECMO FiO₂</td>
<td>50-100%</td>
</tr>
<tr>
<td>Sweep gas flow</td>
<td>Usually 1:1 as ECMO flow; determines carbon dioxide removal</td>
</tr>
<tr>
<td>ECMO monitoring</td>
<td>Inlet pressure, pre and post membrane pressure, mixed venous saturation and ECMO blood flow</td>
</tr>
<tr>
<td>Patient monitoring</td>
<td>ECG, SPO₂, invasive BP (Pulsatility), temperature, urine</td>
</tr>
<tr>
<td>Anticoagulation</td>
<td>Hourly activated clotting time (ACT) to keep 160-180 sec (Older children APTT 4 hourly); if heparin need is high, anti-thrombin levels</td>
</tr>
<tr>
<td>Oxygen delivery</td>
<td>Mixed venous saturation and lactate (Blood gas)</td>
</tr>
<tr>
<td>Limbs/Cannula</td>
<td>Distal perfusion of limb, cannula position and clots in the circuit</td>
</tr>
<tr>
<td>Blood tests</td>
<td>CBC, electrolytes, LFT, blood gas, calcium</td>
</tr>
<tr>
<td>Hemolysis</td>
<td>Plasma free hemoglobin daily (> 50 mg/dL significant)</td>
</tr>
<tr>
<td>Imaging</td>
<td>Daily CXR; In neonates daily USG cranium for IC bleed</td>
</tr>
</tbody>
</table>
Anticoagulation - Continuous heparin infusion is titrated using a goal of activated clotting time (ACT) in the range of 160-180 seconds. The platelet count is maintained at or above 1 lakh/mm³.

Weaning and decannulation

VV ECMO

Lung recovery on VV ECMO is indicated by constant need to reduce ECMO settings and improvement in chest x-ray. Weaning process is simple. Sweep gas flow is gradually reduced and turned off with increase in ventilator settings. If child has stable blood gases for few hours (2 to 12 hours), decannulation is done in ICU itself with firm pressure after decannulation.

VA ECMO

Cardiac recovery on VA ECMO support is indicated by an increase in pulse pressure and by improved contractility on echocardiography. Weaning process is more complex. The ECMO flow is gradually decreased upto 1 l/min (or clamped), inotropes and ventilator settings are increased and hemodynamics assessed clinically and by echocardiograph. If stable for few hours on minimum flow, decannulation is done surgically with vessel repair in theatre.

Complications

Infection - An important cause of mortality and prolonged ECMO run and ICU stay. Fever may be absent as temperature is controlled by ECMO machine. ECMO circuit can cause SIRS without sepsis. High index of suspicion and routine surveillance culture has a role in early identification of sepsis.

Bleeding - Can be life threatening and an indication for coming off ECMO. All invasive procedures should be avoided while on ECMO due to risk of bleeding, unless absolutely essential. Blood products should always be readily available all the time.

Thrombosis - Can occur in the circuit, oxygenator or pump head especially in prolonged ECMO run as ECMO circuit activates clotting cascade. Thrombus in pump head or oxygenator may necessitate emergency change of ECMO circuit.

Hemolysis - Falling Hb and platelets with DIC like blood picture can occur. Plasma free hemoglobin can be monitored.

Air embolism, decannulation and circuit disconnection are rare but catastrophic complications which should be prevented by meticulous nursing care.

Recirculation (VV ECMO) can occur between drainage and return cannula. This can be detected by bright red appearance of blood in drainage cannula similar to arterial blood. This is best prevented by placing both cannula tips wide apart and draining blood from vena cava and returning to right atrium.

Differential hypoxia (North-South syndrome or Harlequin syndrome) causes upper body appears blue hypoxemia while lower body appears pink. This happens in femoro-femoral VA ECMO in children with poor lung function and adequate heart function. The deoxygenated native blood supplies upper body while oxygenated ECMO blood supplies lower body. This is addressed by increasing ventilatory settings or ECMO flow or by changing to VV ECMO.

Outcome

The UK Collaborative ECMO trial group publications prove that ECMO was effective in both reducing mortality and severe disability at 7 years, compared to conventional therapy. The underlying disease processes appear to be the major influencing factor on morbidity as reported to

Table II. Overall survival after ECMO

<table>
<thead>
<tr>
<th>Neonates</th>
<th>Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDH</td>
<td>50%</td>
</tr>
<tr>
<td>MAS</td>
<td>90-97%</td>
</tr>
<tr>
<td>PPHN</td>
<td>75-85%</td>
</tr>
<tr>
<td>RDS</td>
<td>>70%</td>
</tr>
<tr>
<td>Sepsis</td>
<td>50-70%</td>
</tr>
</tbody>
</table>

Box 3. ECMO - Referral criteria

1. A neonate with any respiratory problem e.g. Meconium aspiration with an oxygenation index (OI) of >40 on optimal treatment for four hours, (unresponsive to nitric oxide if severe Pulmonary hypertension is present).
2. An infant or child with a pneumonia/air leak/ARDS and an OI of 25.
3. An arterial pCO2 of > 90 for more than three hours despite optimal treatment.
Extracorporeal Life Support Organization (ELSO) (Table II).

Referral to ECMO centre

Early discussion of a potential ECMO patient with the ECMO service provider will help in deciding the need, timing and mode of transfer and pre-transfer optimisation of patient. The criteria for an ECMO referral is given in Box 3.

Conclusion

With the advances in the technology and expertise, ECMO complications have reduced and outcomes improved. Advent of "Mobile ECMO" and "E-CPR" have the potential to increase the number of lives saved by ECMO.\(^{11}\) It is important that pediatricians taking care of sick children are familiar with indications and refer early to ECMO service as patient selection and timing are the key to success.

Points to Remember

- **ECMO provides lifesaving temporary lung and/or heart support in severe respiratory and cardiac failure due to any reversible cause.**
- **Patient selection and timing of initiation are crucial for successful outcomes.**
- **There is increase in the availability of the service in India and there is good evidence to support the use of ECMO.**
- **Awareness of indications and early discussion with ECMO service provider is very important.**

References

NEWS AND NOTES

South PEDICON 2017

31st South Zone conference

46th Kerala State IAP Conference, Kollam

3rd, 4th and 5th November 2017

Rajendra Prasad: Chairman
Gopimohan R.: Secretary

Conference Secretariat: Gopi Nivas, Olayil. Thevally P.O., Kollam - 691 009.
e-mail: southpedicon2017@gmail.com

ACUTE MYOCARDITIS AND CARDIOMYOPATHY

*Zulfikar Ahamed M

Abstract: Viral Myocarditis continues to be a major cause of mortality and morbidity in children among acquired cardiac causes. Myocardial cell necrosis and inflammation of myocardium, due to both viral invasion and immune mimicry leads to myocarditis. The clinical manifestations range from nearly asymptomatic presentation to fulminant myocarditis. Evaluation includes acute phase reactants, cardiac biomarkers, chest x-ray, ECG and echocardiography. Radionuclide scan, cardiac MRI and endomyocardial biopsy are utilized in selected situations. Treatment of myocarditis is essentially supportive-treatment of heart failure, using diuretic, ACE inhibitors, IV inotropes and mechanical support by mechanical ventilation, ECMO and LVAD. Antiviral agents and immune suppressants have limited role only in treating viral myocarditis. IVIG could be useful in children. The newer vistas in viral myocarditis encompass immunopathology in EMB, use of cardiac MRI in early detection and possible use of drugs which prevent biotransformation to DCM. The prognosis of viral myocarditis is guarded, due to both short term and long term mortality and morbidity.

Keywords: Myocarditis, Cardiomyopathy, Management, Children.

Myocarditis is an inflammatory disease of the heart muscle. WHO / International Society and Federation of Cardiology (ISFC) in 1995 defined myocarditis as “an inflammatory disease of the heart muscle, diagnosed by established histological, immunological and immune histological evidence”. Dallas criteria (1987) offers a pathological definition. “It is the presence of inflammatory infiltrate within the myocardium with myocyte degeneration or necrosis of non-ischemic origin”. There are two more related terms which are closely linked to myocarditis: (a) Inflammatory cardiomyopathy (WHO/ISFC) where myocarditis occurs in association with left ventricular dysfunction and (b) dilated cardiomyopathy (WHO/ISFC) a clinical diagnosis which is characterized by dilatation and impaired contraction of left ventricle or both ventricles that is not explained by abnormal loading conditions or coronary artery disease.

Acute myocarditis and cardiomyopathy, although uncommon, continue to contribute to significant mortality and morbidity in children. Myocarditis can be a lethal disease in children when it presents as a fulminant myocarditis. It is also the major causative substrate for dilated cardiomyopathy, the latter contributing much morbidity and consequent mortality and hence myocarditis can be said to bite the myocardium causing mortality and maim the muscle, causing DCM. Grist and Bell proposed that virus can cause myocardial disease in 1974. After the advent of endomyocardial biopsy (EMB) and later the regular use of biopsy in myocarditis, virus genome was isolated in the myocardium, which proved the virus theory. Dallas criteria which, for the first time characterized the pathology was published in 1986. The link between myocarditis and DCM was clearly established in 1983.

Epidemiology

The estimated annual incidence of myocarditis is 1/100,000. The incidence could be an underestimation as many myocarditis could be presenting with minor, non-specific symptoms. The autopsy data reveals an incidence of 0.5 to 1.8%. From Texas Heart Institute, the incidence of myocarditis among children admitted was 0.3%. There is a clear bimodal incidence of myocarditis. It peaks around infancy and mid teenage. There is a distinct male predominance. The age and gender factors may depend on genetic and environmental influences. At least 8%-10% of sudden cardiac death in infants and children is attributed to myocarditis.

Etiology

Myocarditis could be due to varying etiology (Box 1). The most common cause is viral infection. Virus genome was present in 38% of EMB specimens in a large study of 624 patients with myocarditis / DCM. The most prominent viruses implicated are Coxsackie B, adeno virus and human parvo virus. Other viruses involved are Epstein-Barr, cytomegalovirus, adenovirus, and measles virus.
Barr, cytomegalovirus (CMV), enteric cytopathic human orphan (ECHO) virus, hepatitis C, human immunodeficiency virus (HIV), herpes, influenza, mumps, measles, rubella, polio, varicella and yellow fever. Recently there has been a shift of etiologic profile, with human parvovirus B19 (HPV) being increasingly implicated in infant with myocarditis.

HIV also is an important cause of myocarditis as also dengue and H1N1, the latter presenting in epidemic form in southern states of India. While HPV myocarditis could be usually mild, causing only lymphocytic infiltration, H1N1 myocarditis can be fulminant, resulting in high acute mortality. Dengue myocarditis is well known to produce both LV dysfunction and heart blocks in addition to pericardial effusion. Of the non-viral etiologies, leptospirosis, Lyme disease, Chagas disease and anthracycline toxicity assume enhanced importance in current clinical practice.

Pathogenesis

As the most common etiology of acute myocarditis is viral, the pathogenesis will be centered on viral myocarditis (Fig.1). There are 3 reasonably well defined phases in the pathogenesis of viral myocarditis. Most of the information is derived from murine models of enteroviral myocarditis.

Stage I - Acute viral invasion and multiplication (0-7 days): Virus invades myocytes and cause cell necrosis, apoptosis and inflammation. Myocyte necrosis exposes cellular antigens like myosin.

Stage II - Sub acute phase - Immune response (1-6 weeks): There is an acute immune reaction which activates T cell immune system. T cells, natural killer (NK) cells and macrophages are released. NK cells are protective, while T cells damage cardiac tissue by immune mimicry by T cell activation, cytokine production and auto antibody release. The T cells attack both virus and infected myocytes. Virus elimination follows. This will be usually accompanied by decline in immune response. If immune response persists despite virus elimination, it will lead to chronic inflammatory cardiomyopathy and later to dilated cardiomyopathy.

Stage III - Chronic phase (DCM): This phase involves healing by fibrosis and remodeling but sometimes associated with inflammation and viral persistence. LV dilatation and remodeling occur, leading to DCM.

If immune response presents with or without the presence of virus, an inflammatory cardiomyopathy occurs which later leads to DCM, by further LV dysfunction, LV dilation and remodeling.

Pathology

Macroscopic appearance of the heart shows pale and flabby myocardium. LV is predominantly dilated along with RV. There is thinning of ventricular walls and LV dilatation. Pericardial effusion is often present. Thrombus may be present in the cavities. Three major microscopic findings are cell necrosis / degeneration, inflammatory infiltrate and interstitial edema. Dallas criteria in 1987 characterized the pathology of viral myocarditis (Box 2).

<table>
<thead>
<tr>
<th>Box 1. Etiology - Myocarditis</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Infectious</td>
</tr>
<tr>
<td>- Viral</td>
</tr>
<tr>
<td>- Bacterial</td>
</tr>
<tr>
<td>- Spirochetal</td>
</tr>
<tr>
<td>- Myotic</td>
</tr>
<tr>
<td>- Rickettsial</td>
</tr>
<tr>
<td>- Protozoal</td>
</tr>
<tr>
<td>- Helminthic</td>
</tr>
<tr>
<td>B. Non Infectious</td>
</tr>
<tr>
<td>- Toxins: Anthracyclines</td>
</tr>
<tr>
<td>- Hypersensitivity</td>
</tr>
<tr>
<td>- Systemic diseases e.g. Kawasaki Disease</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Box 2. Dallas criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Cell death and inflammation – Active myocarditis</td>
</tr>
<tr>
<td>ii. No cell death and inflammation is present – Borderline myocarditis</td>
</tr>
<tr>
<td>iii. No cell death and no inflammation – Resolved myocarditis</td>
</tr>
<tr>
<td>iv. No cell death and inflammation is present (on repeat EMB) – Resolving</td>
</tr>
</tbody>
</table>

Clinical presentation

Viral myocarditis presents clinically as a spectrum of manifestations. It can be asymptomatic to fulminant and can cause sudden cardiac death in infants and children. It is often heralded by flu like illness. The clinical presentation varies with age (Box 3). It could be sepsis like presentation in neonate and young infant, SIDS in infants, stroke due to embolic episode and acute abdomen.
The major clinical presentations are

i) Recent onset LV dysfunction: Children will have a viral prodrome and acute/sub acute onset of heart failure. This will be accompanied by variable LV dysfunction.

ii) Acute fulminant myocarditis (AFM): Flu like prodrome will be followed by a latency of 1-2 weeks. Child will present with severe congestive heart failure (CHF) / shock/multiorgan dysfunction within 2-3 days of onset of illness. Echocardiographic findings will be characteristic. It occurs in 10% of myocarditis.

iii) Acute coronary syndrome (ACS): This presentation is more common in adolescents and presents with chest pain and dyspnea. There will be features of myocardial infarction in ECG, accompanied by elevated troponins, I and T. Echo will demonstrate near normal LV function with regional wall motion abnormality. Coronary angiogram is normal.

iv) Arrhythmia: Myocarditis may present primarily as sustained tachycardia – SVT or VT. Rarely, recent onset complete heart block (CHB) could also be due to myocarditis.

v) Inappropriate tachycardia: Sinus tachycardia out of proportion to presence of fever is another mode of presentation.

vi) Sudden cardiac death (SCD): It can be a lethal manifestation of myocarditis in 8%-10% in children.
Box 3. Clinical presentations in different age groups

New born: Nonspecific symptoms
- Sepsis like picture
- Shock
- CHF

Infant: Nonspecific symptoms
- CHF
- Shock
- SIDS

Child: Nonspecific symptoms
- Acute CHF
- Arrhythmia
- Acute coronary syndrome
- Inappropriate tachycardia
- Shock

vii) ‘Minimally’ symptomatic child with cardiomegaly: Can be diagnosed to have myocarditis, usually by echocardiography.

The most common presentation will be a recent onset heart failure with the following physical signs. Baby may be pale with diaphoresis; facial puffiness is often present but edema is uncommon (Box 4).

Box 4. Cardiac findings
- Resting tachycardia, tachypnea
- Prolonged capillary refill time
- Reduced systolic BP / Hypotension
- Elevated JVP
- Cardiomegaly
- Soft S1, variable S2
- S3 gallop
- Low intensity systolic murmur at apex due to mitral regurgitation (MR)

Table I. Acute fulminant and non-fulminant myocarditis - Differentiation

<table>
<thead>
<tr>
<th>Features</th>
<th>Acute fulminant myocarditis</th>
<th>Acute non-fulminant myocarditis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prodrome</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Onset of illness</td>
<td>< 3 days</td>
<td>3 – 7 days</td>
</tr>
<tr>
<td>Shock</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>CHF</td>
<td>Severe</td>
<td>Yes</td>
</tr>
<tr>
<td>MODS</td>
<td>Yes</td>
<td>Less likely</td>
</tr>
<tr>
<td>Tachycardia</td>
<td>+++</td>
<td>++</td>
</tr>
<tr>
<td>Hypotension</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>CRP</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Biomarkers</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>ECG-QRS</td>
<td>Wider</td>
<td>Wide</td>
</tr>
<tr>
<td>ECHO</td>
<td>Ejection fraction: Marked decrease</td>
<td>Decrease</td>
</tr>
<tr>
<td></td>
<td>LV: Minimal dilation</td>
<td>Dilated</td>
</tr>
<tr>
<td></td>
<td>IV S: Thick</td>
<td>Thin</td>
</tr>
<tr>
<td>Short term mortality</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Recovery</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

52
Acute fulminant myocarditis

It deserves special description because of its potential for early high mortality but excellent long term survival and function in survivors. The classical presentation is as severe heart failure and severe shock. Prodromal flu could be present. Child goes into shock / severe HF / MODS within 2-3 days of onset of illness. The classical echocardiographic findings are significantly impaired LV function, minimally dilated LV and thickened LV walls due to edema. The differentiation from non-fulminant myocarditis is given in Table I.

Differential diagnosis

There is considerable overlap between viral myocarditis and dilated cardiomyopathy. Both share clinical picture of heart failure, cardiomegaly, apical mitral regurgitation (MR) murmur, nonspecific ECG changes, cardiomegaly with varying pulmonary venous hypertension (PVH), impaired LV function and MR. Rheumatic carditis is another major cause of recent onset CHF in a child. Endocardial fibroelastosis (EFE) can be an important differential diagnosis in early infancy. However, the incidence of EFE is fast declining. Restrictive cardiomyopathy (RCM) could be another differential diagnosis. Broncholitis can be also be a close differential diagnosis.

There are certain remediable causes of ‘recent onset’ LV dysfunction in infants. They are anomalous origin of the left coronary artery from the pulmonary artery (ALCAPA), coarctation of aorta (COA), severe aortic stenosis (AS), hypocalcemia, carnitine deficiency and cardiac complications of scorpion sting. Tachycardia induced cardiomyopathy (TIC) can be completely normalized by converting SVT into sinus rhythm. It is imperative to exclude all mechanical, electrical and metabolic causes of LV dysfunction before committing on the diagnosis of inflammatory cardiomyopathy. Recently Sagar, et al classified myocarditis into 3 subsets, based on symptoms, signs and investigations (Box 5).

Investigations

Investigations are designed to reach a diagnosis, exclude certain illnesses, prognosticate and confirm the diagnosis. It can be divided into first and second line investigations.

First line investigations (always done)

i. Acute phase reactants: ESR (≥ 30 mm/hr) and CRP are elevated in 50%.

ii. Aspartate aminotransferase (AST): Elevation of AST is considered very useful and is a sensitive (85%) marker in viral myocarditis.

iii. Biomarkers: The usual biomarkers used are Trop T or Trop I, CK MB, BNP and Pro BNP. For troponins, with the usual cut off value of >0.10 ngm/mL, sensitivity and specificity are 55% and 94% and if it is ≥0.050 ngm/mL, sensitivity and specificity are 70% and 85% respectively. Trop T and Trop I are likely to be more positive in myocarditis presenting as ACS (75%). In a proper clinical setting, if LV dysfunction and positive Trop T/I are demonstrated, myocarditis is likely. If a child has chest pain and positive Trop T, 50% of them will have heart disease. Half of those children will have myocarditis. In subclinical myocarditis, Trop T is usually negative. CPK MB is less sensitive and less useful. Other blood tests done occasionally in myocarditis are complement, antimyosin antibodies, blood for viral antibodies (both acute and convalescent sera).

iv. Chest x-ray: Majority of children who present with sub-acute LV dysfunction (non fulminant) will show cardiomegaly (80%) (Fig.2). Those who present with arrhythmia and ACS will not have cardiac enlargement (Fig.3). Other findings are LA enlargement and mild pleural effusion.

v. ECG: It is a nonspecific but very useful test in suspected myocarditis. ECG abnormalities are present in 90%. Major abnormalities are sinus tachycardia

<table>
<thead>
<tr>
<th>Box 5. Myocarditis – Sagar classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. No symptoms - Possible subclinical acute myocarditis**</td>
</tr>
<tr>
<td>II. Symptomatic - Probable acute myocarditis**</td>
</tr>
<tr>
<td>III. Histology and immunohistochemical features in EMB - Definite acute myocarditis</td>
</tr>
</tbody>
</table>

**Should have one of the three: Positive biomarkers, ECG abnormalities, abnormal cardiac function

Fig.2. CXR - Cardiomegaly with globular heart | Fig.3. CXR - No cardiomegaly but acute pulmonary edema
(60%), ST-T changes (50%), LVH (40%), low voltages, LAE and acute myocardial infarction (AMI) pattern (Fig.4 and 5). The triad of ECG features in myocarditis are sinus tachycardia, low voltage complexes in precordial leads and ST-T changes. AV blocks, ectopics, SVT and VT can occur. CHB is rare. In acute coronary syndrome due to myocarditis, ST-elevation myocardial infarction (STEMI), T¯, ST¯ and deep Q are present.

ECG has both diagnostic as well as prognostic value. ECG features which mark poor prognosis are deep Q waves, LBBB, prolonged QTc, wide QRS (>120 msec), VPCs, abnormal QRS axis. A normal ECG does not rule out viral myocarditis. Many young children may not show the expected low voltages.

vi. Echocardiography: Initial echocardiography (by transthoracic route) is done in all, using M-mode, 2D and colour flow mapping (CFM). It is one of the most useful investigations in suspected myocarditis. Apart from picking up abnormalities in myocarditis, it will exclude specific causes of LV dysfunction. Echo is abnormal in more than 70%. It is most useful when child presents with heart failure. LV is dilated. RV can also be affected. LV ejection fraction is uniformly reduced. There could be mild pericardial effusion. Regional wall motion abnormality (RWMA) is common. However it may also suggest presence of ALCAPA in infants. MR and less commonly TR can be picked up. High right ventricular systolic pressure (RVSP) is usually found in DCM rather than myocarditis. Hence echocardiography is used to pick up LV dysfunction, rule out structural heart disease, differentiate between acute non fulminant myocarditis and fulminant myocarditis, prognostication and evaluation of effectiveness of therapy (Box 5).

Second line investigations (not always done)

i. Radionuclide imaging: Nuclear imaging though useful is less commonly employed in the diagnosis of myocarditis. Gallium scan can pick up inflammation of myocardium. Indium labeled antimyosin antibodies pick up patchy necrotic areas. Technetium labeled single photon emission computed tomography (SPECT) can pick up myocardial necrosis in myocarditis. Sensitivity of such imaging is 83% and specificity is low (53%). They are not routinely used except in suspected sarcoidosis and concomitantly with other imaging modalities.

ii. Cardiac magnetic resonance imaging (CMR): Cardiac MRI is the most promising new age imaging modality in myocarditis. It is being increasingly used in early diagnosis, characterization of pathology, prognostication and in performing guided endomyocardial biopsy. CMR is exquisitely sensitive, highly specific and makes early diagnosis possible, picking up subtle, patchy involvement. T2 weighted images are obtained and contrast CMR is done using gadolinium – both first pass and delayed. CMR looks at LV size, function, wall thickness and myocardial injury. Gadolinium entrancement can be either early or late. The enhancement can be transmural and subepicardial. Lake Louis consensus criteria for myocarditis by MRI are global / regional myocardial signal intensity, increase in T2 weighted images, increased global enhancement on gadolinium and focal lesions with non-ischemic enhancement.

iii. Endomyocardial biopsy (EMB): It is the gold standard for diagnosing myocarditis though not regularly done because of the following issues:

(a) Sampling error - Biopsy needle may not hit areas of myocarditis

(b) Inter observer variability in interpretation

(c) A hazardous procedure (of late the CMR guided EMB is being done to improve sensitivity).

Box 5. Myocarditis - Salient features in ECHO

- Triad of echocardiographic features of AFM - Impaired LV function, minimally dilated LV and septal thickness
- EF can be preserved when child presents with ACS or arrhythmias
- Restrictive cardiomyopathy (RCM) - rare.
- EF - Significantly impaired with minimal LV dilatation in AFM
- Tissue Doppler characteristics may be more sensitive in myocarditis
Both histopathological examination and immunopathological tests can be carried out on specimens. The advanced tests include PCR, insitu hybridization (ISH), HLA antigens and various T cell markers. Dallas criteria is traditionally utilized for characterizing myocarditis. Lieberman also offers a clinico-pathological classification. Various new techniques of diagnosis have been applied to biopsy. PCR and ISH are the two most significant ones. These techniques have demonstrated a shift of etiology from coxsackie / adeno virus to HPV and herpes virus.

Treatment

Treatment of myocarditis essentially remains supportive. There are new management modes which have thrown up variable results. Strategy is to categorize myocarditis into stable and unstable forms. All are admitted into PICU on account of its inherent mortality potential.

I. Management of stable children: Management of congestive heart failure using diuretics, ACE inhibitors or angiotensin receptor blocker (ARB) and aldosterone inhibitors.

a. Diuretics like frusemide are commonly used for symptom relief. Torsemide has been found to reduce bio transformation from myocarditis to DCM in rat model. However, translation into practice is yet to be shown.

b. ACE inhibitors: They are to be introduced early in the management. Either captopril or enalapril is used. Captopril is the preferred one as it has short half life and additional antioxidant property. ACE inhibitors in myocarditis have many advantages in addition to their hemodynamic role. They cause down regulation in immune response thereby reducing inflammatory activity, cell necrosis and fibrosis and biotransformation to DCM. The standard hemodynamic effects are afterload reduction, improving left ventricular ejection fraction (LVEF) and preventing cardiac remodeling.

c. Digoxin: It is either not indicated or to be withheld in myocarditis in spite of LV dysfunction as it increases proinflammatory cytokines, enhance myocardial injury and increase chance of arrhythmia.

d. Aldosterone antagonists: Spironolactone can be an additional drug as it may reduce fibrosis, inflammation, remodeling and can have a survival benefit.

e. &-Blockers: In a stable patient, &-Blockers could be used along with ACE inhibitors and diuretics. Carvedilol is the preferred drug, to be given carefully well titrated. Metoprolol may be harmful in the setting of acute myocarditis. &-Blockers are to be avoided in acute fulminant myocarditis, decompensated heart failure and acute unstable myocarditis.

f. Calcium channel blockers are not indicated in treatment. NSAIDs are absolutely avoided in myocarditis as they will enhance inflammation and may increase virus multiplication.

g. Rest / Activity: Rest is advised in acute stage for at least two weeks and physical activity is curbed for another 6 months. This is being advocated due to possible deleterious effect of exercise on virus multiplication and inflammation and possible risk of sudden cardiac death (SCD).

II. Management of unstable children / hemodynamic compromise: Child or infant should be offered support by an IV inotrope with or without use of IV vasodilators, initially.

a. IV inotropes: Either dobutamine or milrinone can be given. Dobutamine may be the preferred drug in a normotensive child. Dopamine is given in a hypotensive child. There is less experience in myocarditis with levosimendan. However, it could be useful in decompensated DCM.

b. Vasodilators: Either IV nitroprusside or IV nitroglycerin is given to off load the ventricle. They have to be carefully titrated to avoid hypotension.

c. Diuretics: IV diuretics are given to reduce pulmonary congestion. IV infusion of frusemide can be offered.

d. Other drugs: ACEI inhibitors are administered routinely in the absence of renal failure and hypotension. Digoxin is not to be used as well as &-blockers.

e. Mechanical ventilation: It is a useful supportive measure either noninvasive or invasive ventilation could be used.

f. Anti arrhythmic drugs: In documented arrhythmia they are used. Amiodarone is the preferred agent. &-blockers are also used.

g. Anticoagulants: In severe LV dysfunction (EF ≤ 20%) anticoagulants are used to prevent clot formation. Clots in the cardiac chamber is yet another indication.

h. ECMO: ECMO support is useful in severe myocarditis, especially in fulminant myocarditis. It has been proven to save lives in severe acute myocarditis.

i. Ventricular assist device (VAD): It is being increasingly used to bridge / support child with severe myocarditis in the west. Increasing miniaturization will increase its use in the future.
Specific / Targeted therapy

These agents are used based on various etiopathogenetic mechanisms of viral myocarditis (Fig.6). They are antiviral agents, immuno suppressants and immunomodulators.

I. Anti viral therapy: Theoretically antiviral agents will be most useful in the early phase of the disease and by the time child presents with myocarditis, the initial phase would have been over. Hence, routine use of antiviral agents is not practiced. b interferon has been tried in entero and adeno viral myocarditis. IV ribavirin has been used in myocarditis due to RSV infection. interferon has also been tried. In Betaferon in chronic viral cardiomyopathy (BICC) trial, betaferon (IFN Beta 1b) was used in 143 patients with a better outcome, in terms of viral load and functional improvement. Still there are limited options currently for the use of antiviral agents.

II. Immunosuppression: Because of the immune mimicry involved in pathogenesis of myocarditis, the possible use of immune suppressants is an attractive option. The traditional drugs have been prednisolone, azathioprine and cyclosporine. They have been used both in adults and children. There have been more than 20 trials, both uncontrolled and controlled ones in myocarditis using immune suppressants. Many have shown improvement in histology but there has been no significant difference in survival and improvement of cardiac function. This is possibly because there is substantial spontaneous improvement in viral myocarditis. The only major study in children used prednisolone alone, prednisolone withazathioprine and with azathioprine and cyclosporine. A combination therapy showed improved outcome. However, a recent meta analysis in children demonstrated no significant benefit. Overall, the use of immuno-suppressants is limited.

There are specific circumstances where steroids are used. Sarcoidosis with myocarditis is treated with steroids. Giant cell myocarditis, which otherwise has a dismal prognosis is treated with steroids and cyclosporine for better outcome. It is interesting to note that in spite of weak evidence for steroids, steroids are used in 25% of myocarditis in USA.

Steroids are now used regularly in sarcoidosis with myocarditis, giant cell myocarditis and virus negative, lymphocytic, refractory myocarditis. Active virus multiplication is always ruled out before therapy.

III. Immunomodulation by IVIG: It is an attractive option as it modulates immune reaction rather than suppressing it and has been quite useful in various immunological conditions in children including Kawasaki Disease. At present, IVIG remains a class II indication, either a or b. IVIG has been documented to be more useful in HPV myocarditis. It has been difficult to preselect candidates who are likely to respond to IVIG. Those who...
have viral persistence are less likely to respond, while those who have high antibody titers are more likely to respond. The dose is 1 g / kg / 12 hrs infusion for 2 consecutive days. The dose is split because of the high osmolality of IVIG which could be deleterious to children with myocarditis. Treatment strategy based on clinicopathological status is given in Box 6.

Natural history / outcome

Myocarditis has variable and reasonably predictable outcome.

I. **Myocarditis - Mildly symptomatic EF 40-50%** improve within weeks and months.

II. **Myocarditis - Symptomatic. EF : ≤ 35%**
 a. Complete recovery - 25%
 b. Improvement - 25%

III. **DCM - 50% will die / need transplant**

In viral myocarditis the findings that indicate poor short term prognosis are AFM, low ejection fraction, high PA systolic pressure, neonatal presentation, age, need for ventilation / ECMO, VT and cardiac arrest. Mortality in hospital depends on syncope as a presentation, LBBB, EF < 35%, FC III-IV, - LVEDP, PAH and biopsy (e.g. Giant cell myocarditis). In AFM, early mortality is high (10-40%) but long term survival and recovery of LV function are very good. Transformation of viral myocarditis to DCM is the most vexing problem, once child survives the initial insult. Various studies have put this between 15-45%. Clinical studies have put spontaneous resolution as 70%, while histological studies have put it at 50%. A meta analysis involving 388 children showed a resolution of 57% at the end of 5 years, indicating more than half of myocarditis resolved.

Future directions and new frontiers

Cardiac MR is being increasingly used to detect myocarditis much earlier and also to guide EMB and streamline treatment strategy. It could become the next generation gold standard in myocarditis. New specific targeted therapy is unlikely to evolve. However, advent of early diagnosis and possible tissue characterization by CMR may lead to judicious and more focused use of immunosuppressants and IVIG. Miniaturization of VAD may make it more attractive in a small child as a life saving measure as well as bridge to transplant. ECMO will be increasingly used in the future in the sickest of children. Future elucidation of pathogenesis of biotransformation to DCM may lead to discovery of treatment strategy to block this critical pathway and reduce incidence of DCM.

Points to Remember

- Currently Coxsackie B, adenovirus and human parvovirus are the three leading causes of viral myocarditis.
- Dallas criteria is the first and still the foremost histological classification of myocarditis.
- The major presentations of myocarditis are recent onset CHF, acute fulminant myocarditis and chest pain syndrome in children.
- Remediable causes of ‘recent onset’ LV dysfunction in infants, such as ALCAPA, undiagnosed CoA, hypocalcemia and scorpion sting should be recognized and treated.
- Viral myocarditis can mimic bronchiolitis.
- Cardiac biomarkers, AST and ESR are the three most useful blood investigations while echocardiography is the most useful one. Chest x-ray and ECG are abnormal in 90% of cases.
- CMR is the most promising imaging modality in recognition and characterization of myocarditis.
- Endomyocardial biopsy is utilized only in selected centers.
- Mechanical ventilation, ECMO and LVAD are increasingly used to save a life in fulminant myocarditis.
- Fulminant myocarditis, even if it has high acute mortality, recover completely once they survive.
- Those who present with chest pain syndrome, arrhythmia and fulminant myocarditis have excellent long term prognosis.
- Newer modalities of treatment like antiviral agents and immunosuppression have only limited role, though IVIG administration continuous to be popular.
• Never agents which could prevent biotransformation of myocarditis to DCM have to be developed in the future.

Bibliography

APPROACH TO MANAGEMENT OF ARRHYTHMIAS IN CHILDREN

Gnanasambandam S

Elamaran C

Abstract: Arrhythmias are not uncommon in pediatric population and vary in spectrum from benign normal variants to life threatening arrhythmias. Acute management is based on presence or absence of pulse, perfusion and QRS width in ECG. Chronic management aimed at prevention of recurrences is dictated by the specific arrhythmia.

Keywords: Narrow complex tachycardia, Wide complex tachycardia, Bradycardia, Supraventricular tachycardia, Ventricular tachycardia, Implantable defibrillator, Pacemaker

Arrhythmias commonly seen in children can vary from normal benign variants to life threatening malignant arrhythmias. The approach is based on symptoms, rate, presence of hemodynamic compromise (pulse and perfusion) and ECG findings. The criteria for tachyarrhythmia and bradyarrhythmia are based on normal heart rate for age (Table I).

Table I. Normal heart rate by age

<table>
<thead>
<tr>
<th>Age</th>
<th>Awake heart rate (bpm)</th>
<th>Mean (bpm)</th>
<th>Sleeping pulse rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newborn to 3 months</td>
<td>85–205</td>
<td>140</td>
<td>80-160</td>
</tr>
<tr>
<td>3 months to 2 years</td>
<td>100–190</td>
<td>130</td>
<td>75-160</td>
</tr>
<tr>
<td>2 years to 10 years</td>
<td>60–140</td>
<td>80</td>
<td>60-90</td>
</tr>
<tr>
<td>>10 years</td>
<td>60–100</td>
<td>75</td>
<td>50-90</td>
</tr>
</tbody>
</table>

Arrhythmia can be tachyarrhythmias or bradyarrhythmias. Tachyarrhythmias can be further classified based on QRS duration as wide complex or narrow complex tachycardia. Wide complex tachycardia is one wherein QRS duration is more than 100 ms in children 4 to 16 years of age and more than 90 ms in children less than 4 years of age.

Narrow complex tachycardia one wherein QRS duration is less than 90 millisecond (ms) in children between 4 and 16 years of age and less than 86 ms in children less than 4 years of age. Based on the P wave and QRS the various causes for narrow complex tachycardia can be made as follows:

1. Regular with normal P wave and QRS: Sinus tachycardia, inappropriate sinus tachycardia and sinoatrial nodal re-entrant tachycardia.
2. Grossly irregular narrow QRS complex: Tachycardia with irregular pattern or apparently absent atrial activity (Atrial fibrillation).
3. Regular variations in QRS: Atrial tachycardia, atrial flutter or rarely atrioventricular nodal reentrant tachycardia (AVNRT), Saw tooth pattern of atrial activity is seen in atrial flutter while isoelectric interval between atrial activity is seen in atrial tachycardia.
5. No P waves: AVRT
6. P waves visible after QRS (ST segment) :AVRT.

History and physical examination

There is sudden or gradual onset and termination of palpitation. The frequency and regularity of palpitation has to be documented correctly. History of syncope should be asked for, as it can indicate an underlying significant cardiac disease and also increases the risk for sudden cardiac death. A family history of sudden cardiac death (SCD) may be associated with Wolff-Parkinson-White (WPW) syndrome, catecholaminergic polymorphic ventricular tachycardia, hypertrophic cardiomyopathy and arrhythmogenic right
ventricular dysplasia. Chest pain is rare in children. Bilateral sensory neural deafness may be associated with long QT syndrome.

Pulse rate and rhythm has to be carefully looked for as an irregular pulse followed by a pause occurs in ventricular premature beats (VPBs) or atrial premature beats (APBs). Respiration can cause a variation in heart rate wherein inspiration increases and expiration decreases heart rate in sinus arrhythmia and is physiological. Complete and thorough clinical exam of the cardiovascular system has to be done to detect an underlying heart disease or failure.

Basic investigations

Cardio thoracic ratio and pulmonary congestion has to be looked for in chest xray. A twelve lead ECG with rhythm strip helps to differentiate into tachy and bradyarrhythmias. In specific instances Holter monitoring is done which provides a continuous ECG recording for 24 hours and upto 1 week duration. In patients with intermittent or infrequent symptoms, transtelephonic monitors can detect arrhythmias for a period of up to 30 to 60 days which is known as event monitor. Effect of exercise on dysrhythmias is checked by Treadmill testing. Echocardiogram can detect associated structural heart disease and LV dysfunction in children with dysrhythmia.

Special tests

Electrophysiology study (EPS) for diagnostic evaluation of foci of origin, risk of malignant arrhythmia and sudden cardiac death and ablation of aberrant pathway or ectopic foci can be done while Magnetic resonance imaging (MRI) can be done to evaluate an arrhythmogenic RV dysplasia and cardiomyopathy. Genetic testing can be done for arrhythmogenic RV dysplasia, catecholaminergic polymorphic VT.

Acute management of tachycardia

It depends on the characteristics of pulse and perfusion. If pulse or signs of circulation are absent pediatric cardiac arrest algorithm has to be followed. If pulse is present and perfusion is adequate pediatric tachycardia with pulse and adequate perfusion algorithm needs to be followed. If perfusion is poor pediatric tachycardia with pulse and poor perfusion algorithm needs to be followed as per pediatric advanced life support algorithm (PALS). Acute management of arrhythmias is done in emergency room and pediatric intensive care unit.

Chronic management

A) No treatment

Asymptomatic ventricular premature depolarizations (VPD) and atrial premature depolarizations (APD) do not usually require drug therapy.

B) Nonpharmacological treatment

In structurally normal heart without preexcitation, reassurance and educating the parents and the child about the methods to terminate SVT is only needed when the arrhythmia is infrequent with no hemodynamic compromise.

Vagal maneuver: A plastic bag filled with ice and water or a cloth soaked in ice water over the upper half of face is applied for 15-20 seconds without occluding nose or mouth. In an older child Valsalva maneuver like blowing into a narrow straw, inducing gag reflex, head down position or carotid sinus massage can be tried to terminate the arrhythmia. Ocular massage is avoided since it may cause retinal injury.

C) Antiarrhythmic drug therapy

Pulsed therapy (single dose oral therapy): Children with sporadic long lasting tachyarrhythmia are treated with a single dose of antiarrhythmic drug at the onset to terminate arrhythmia if vagal manoeuvres are not effective. Chronic pharmacological therapy is needed in long QT syndrome (LQTS), arrhythmogenic RV dysplasia, catecholaminergic polymorphic VT, arrhythmias persisting despite ablation, postoperative arrhythmia and arrhythmias in cardiomyopathy to prevent recurrences. Antiarrhythmic drug classification and their dosages are given in Table II and III respectively.

D) Radiofrequency catheter ablation

Ablation of accessory pathway or the foci of origin of tachyarrhythmia terminates further episodes.

Specific arrhythmias

Sinus tachycardia (Fig.1): Sinus node discharges faster than normal for patient’s age (Table I) in response to hypoxia, hypovolemia, fever, sepsis, injury, pain, anxiety, anemia and cardiac failure. Management is targeted by treating the primary cause. ECG shows normal P-wave preceding QRS complex with constant PR interval.
Table III. Common antiarrhythmic drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class IA</td>
<td></td>
</tr>
<tr>
<td>Procainamide</td>
<td>IV: 0.4mg/kg/min for max 25min; then 20-80mcg/kg/min (max 2g/day). Oral: 5-8mg/kg/dose 4H. Level 3-10mcg/ml.</td>
</tr>
<tr>
<td>Class IB</td>
<td></td>
</tr>
<tr>
<td>Lidocaine</td>
<td>IV: 1mg/kg (0.1ml/kg of 1%) over 2min; then 15-50mcg/kg/min: VF: 1mg/kg (0.1ml/kg of 1%)</td>
</tr>
<tr>
<td>Mexiletine</td>
<td>IV: 2-5mg/kg (max 250mg) over 15 min; then 5-20 mcg/kg/min (max 250mg/hr); Oral: 8mg/kg (max 400mg) stat; then 4-8mg/kg/dose (max 400mg) 8H starting 2hr after loading dose.</td>
</tr>
<tr>
<td>Class IC</td>
<td></td>
</tr>
<tr>
<td>Propafenone</td>
<td>Oral: 70mg/m2/dose 8H; increased if required to 165mg/m2/dose 8H; IV: 2mg/kg over 2hr; then 4mcg/kg/min increased if required to max 8 mcg/kg/min.</td>
</tr>
<tr>
<td>Class II</td>
<td></td>
</tr>
<tr>
<td>Propranolol if required.</td>
<td>IV: 0.02mg/kg test dose then 0.1mg/kg over 10 min (repeat x1-3 prn); then 0.1-0.3mg/kg/dose 3H. Oral: 0.2-0.5 mg/kg/dose 6-12H; slow increase to maximum of 1.5 mg/kg/dose (max 80mg) 6-12H</td>
</tr>
<tr>
<td>Atenolol</td>
<td>Oral: 1-2mg/kg/dose 12-24H; IV: 0.05mg/kg (adult 2.5mg) every 5 min until response (max 4 doses); then 0.1-0.2mg/kg/dose over 10min 12-24H.</td>
</tr>
<tr>
<td>Esmolol</td>
<td>0.5mg/kg (500mcg/kg) IV over 1min; then 50 mcg/kg/min for 4min; if poor response repeat 0.5mg/kg and give 50-200mcg/kg/min; rarely given for >48hr.</td>
</tr>
<tr>
<td>Class III</td>
<td></td>
</tr>
<tr>
<td>d, l-Sotalol</td>
<td>IV: 0.5-2mg/kg/dose over 10min 6H; Oral: 1-4mg/kg/dose 8-12H.</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>IV: 25mcg/kg/min for 4hr; then 5-15mcg/kg /min (max 1.2g/24hr). Oral: 4mg/kg/dose 8H 1 wk; 12H 1 wk; then 12-24H. After starting tablets; taper IV infusion over 5 days. Reduce dose of digoxin and warfarin. Pulseless VF or VT: 5mcg/kg IV over 3-5 min.</td>
</tr>
<tr>
<td>Ibutilide</td>
<td>0.017mg/kg (max 1mg) IV over 10min; then wait 10min and repeat once if reqd.</td>
</tr>
<tr>
<td>Class IV</td>
<td></td>
</tr>
<tr>
<td>Verapamil</td>
<td>IV: 0.1-0.2mg/kg over 10min; then 5mcg/kg/min. Oral: 1-3mg/kg/dose 8-12H.</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>Adenosine</td>
<td>0.1mg/kg stat by rapid IV push; increase by 0.05 mg/kg every 2min to max 0.35mg/kg. Pulmonary hypertension: 50mcg/kg/min (1ml/kg/hr of 3mg/ml) into central vein.</td>
</tr>
</tbody>
</table>
Sinus arrhythmia (Fig.2): A normal variant with heart rate changes with respiratory cycle due to variation in parasympathetic impulse during respiratory cycle. ECG shows increased heart rate during inspiration and a decreased heart rate during expiration.

Inappropriate sinus tachycardia: Tachycardia disproportionate to the precipitating causes for sinus tachycardia. Treatment is by betablocker or calcium channel blockers. Radiofrequency catheter ablation can be done in refractory cases.

Sinus node re entry tachycardia: ECG is similar to sinus tachycardia and is triggered and terminated by atrial premature depolarization. It responds to vagal maneuvers, adenosine, beta blockers, amiodarone, calcium channel blockers and digoxin. Radiofrequency catheter ablation can be done in refractory cases.

Supraventricular tachycardia (SVT): Here rhythm originate above the ventricles, usually with a narrow QRS complex. It includes atrioventricular nodal reciprocating tachycardia (AVNRT), atrioventricular reciprocating tachycardia (AVRT), atrial tachycardia (AT) and junctional ectopic tachycardia (JET). Conventionally atrial flutter and atrial fibrillation are excluded.\(^5\)

Atrioventricular nodal reciprocating tachycardia (AVNRT): In addition to the normal pathway, there is an additional accessory pathway involved with re-entrant circuit in the AV node or perinodal atrial tissue. ECG shows narrow complex tachycardia with absent P waves (Fig.3).

For acute management of AVNRT, adenosine is the drug of choice, if vagal maneuvers fail. Verapamil is also very effective (80%–95%) but may cause severe hemodynamic deterioration in infants and in patients with heart failure and is therefore contraindicated in this group.

For chronic management of AVNRT, prophylactic pharmacological therapy is by administration of calcium channel blockers, beta blockers or digoxin. Class III drugs like amiodarone, sotalol are effective but are not for routine use due to proarrhythmic effects. Flecainide and propafenone is useful in structurally normal hearts. Pulse therapy as a single dose oral therapy (pill in the pocket) is given in the absence of LV dysfunction, sinus bradycardia or pre-excitation. In adolescents, single dose of flecainide (3mg/Kg) or a combination of diltiazem and propranolol is used. Decision for radiofrequency catheter ablation is made based on age, weight of the child (>15 Kg / >2 years), frequency, duration, symptoms, effectiveness of pharmacological therapy and associated structural heart disease.

Atrioventricular reciprocating tachycardia (AVRT): There is an extra nodal accessory pathway between atrium and ventricle in addition to normal AV conduction system. ECG shows narrow complex tachycardia with QRS alternans (Fig.4).
Betablockers, sotalol, amiodarone, flecainide are used as prophylactic pharmacological therapy to prevent recurrences. Digoxin, diltiazem and verapamil are contraindicated since it increases the conduction in accessory pathway and may induce ventricular fibrillation. Radiofrequency catheter ablation is the preferred therapy in patients with WPW syndrome [pre excitation and tachyarrhythmia (Fig.5)] with hemodynamic instability.

Focal atrial tachycardia (Fig.6): It originates from single focus in the atrium at 100-250 bpm with P waves seen in second half of tachycardia cycle (RP duration longer than PR duration) with isoelectric baseline. In addition P wave morphology is usually different from that of the sinus P wave. It is usually benign but may lead to tachycardia induced cardiomyopathy.

Management with calcium channel blockers, beta blockers, flecanide, propafenone, sotalol and amiodarone are effective. Radiofrequency catheter ablation especially in drug refractory or incessant atrial tachycardia and in tachycardia induced cardiomyopathy.

Multifocal atrial tachycardia (Fig.7): It is secondary to causes like pulmonary disease and dyselectrolytemia. ECG shows multiple ectopic foci, characterized by 3 or more P wave morphologies. The management is directed to correction of precipitating factors and may require calcium channel blockers.
Junctional ectopic tachycardia (JET) (Fig.8): Congenital JET is detected prenatally or during neonatal period and has a high family incidence with recessive inheritance while acquired JET is usually detected in early postoperative patients with significant hemodynamic deterioration. ECG shows narrow QRS complexes with AV dissociation.

Congenital JET is resistant to standard anti arrhythmic therapy except amiodarone and propafenone. Acquired JET has usually a limited course and is managed by discontinuation of inotropes and cooling, along with drugs including IV flecanide, amiodarone, procainamide and propafenone. In resistant cases R wave synchronised atrial pacing, emergency AV ablation and ECMO can be done.

Atrial flutter (Fig.9): ECG shows flutter waves-with saw tooth pattern. Management is by rhythm control. In hemodynamically unstable children termination of atrial flutter is mostly achieved by electrical means either by DC cardioversion or by transesophageal pacing. If hemodynamically stable, ibutilide or procainamide may be given intravenously to convert atrial flutter to sinus rhythm. Conversion may also be achieved orally with d, l-sotalol, propafenone or a class IA drug such as quinidine.

Chronic therapy is indicated if recurrences are frequent. In neonates recurrence of atrial flutter is infrequent and chronic therapy is seldom necessary. Digoxin, beta-blockers, and calcium channel antagonists decreases the atrioventricular conduction but are ineffective in conversion to sinus rhythm. d,l-sotalol, propafenone, and amiodarone are effective for rhythm control.
Radiofrequency ablation of the atrial reentry circuits can be given in selective cases.10,11,12 Anticoagulant therapy targeting an INR between 2 to 3 is given in chronic atrial flutter to prevent thromboembolism. Cardioversion by DC version or pharmacological or by ablation, should be done only if anticoagulated or if arrhythmia is less than 48 hours or no atrial clots is detected in echo. Duration of anticoagulation therapy is for 3 weeks prior to cardioversion and continued for 4 weeks following cardioversion.

Atrial fibrillation (AF) (Fig.10): In ECG P waves are replaced by fibrillatory waves with rapid irregular ventricular response. Fixed R-R interval in AF indicates associated complete heart block or associated junctional/ventricular tachycardia. Irregular wide QRS tachycardia suggests associated bundle branch block or conduction over accessory pathway. Rheumatic heart disease, WPW syndrome, hyperthyroidism, myocarditis, digitoxicity and familial AF are the common causes for AF in children.

Recurrent AF is when 2 or more episodes of AF occur. Paroxysmal AF is recurrent AF terminated within 7 days. Recurrent AF not terminated for more than 7 days is persistent AF while permanent AF is AF lasting for more than 1 year. AF in less than 60 years without any evident cardiac or non cardiac cause is lone AF and has a favourable prognosis compared to other groups.

Management is by treatment of precipitating factors and anticoagulation for at least 3-4 weeks before and after pharmacological or electrical cardioversion with target INR of 2 to 3. Ablation therapy is done for focal AF with origin from pulmonary veins.

Drugs used for rate control in pharmacological cardioversion are calcium channel blockers. Digoxin and verapamil are contraindicated in AF associated with WPW syndrome since it increases the conduction in accessory pathway leading to hemodynamic deterioration. For rhythm control in selected patients Class I drugs like quinidine, propafenone, flecanide and class III like amiodarone and sotalol are used which converts AF to sinus rhythm but with risk of proarrhythmic effect.

Ventricular tachycardia and fibrillation (Fig.11): In ventricular tachycardia ECG shows wide QRS complex with AV disassociation while in ventricular fibrillation there is irregular rapid electrical activity with no P, QRS or T wave (Fig.12). Differentiation between ventricular tachycardia (VT) from supraventricular tachycardia (SVT) with aberrancy or bundle branch block can be made out by the characteristics given in Box 1.

In ventricular fibrillation, ECG shows irregular rapid electrical activity with no P, QRS or T wave. Acute management is by DC version and with drugs like IV lignocaine, IV amiodarone, IV procainamide. Chronic management of VT depends upon the presence of symptoms, presence or absence of structural heart disease and LV dysfunction and prognosis of that particular type of VT.13
In structurally and functionally normal heart: In accelerated idioventricular rhythm no treatment is given. In idiopathic LV tachycardia or verapamil sensitive VT with ECG showing VT with RBBB pattern, verapamil, beta blockers, radiofrequency ablation is the treatment. For right ventricular outflow tract tachycardia with ECG showing VT with LBBB pattern, beta blockers and radiofrequency ablation is the treatment. RVOT VT has to be differentiated from more malignant arrhythmogenic RV dysplasia (ECG-LBBB pattern VT with left axis deviation) which has a high risk for sudden cardiac death (SCD). For catecholaminergic polymorphic VT and exercise-induced VT, betablocker is the treatment.

Long QT syndrome can be acquired or congenital. In acquired LQTS drugs causing LQTS is withdrawn, dyselectrolytemia like hypokalemia, hypomagnesemia is managed. IV magnesium is the drug of choice for Torsades de pointes. In congenital LQTS, beta blockers, potassium supplement, mexilitine, left stellectomy and implantable defibrillator are the available drugs and treatment modalities respectively. The indications for implantable defibrillator is given in Box 2.

Bradyarrhythmia

Bradyarrhythmia is defined by a heart rate less than the lower limit of normal for age (Table I). Sinus bradycardia is asymptomatic and follow a benign course with normal increase in rate with exercise. ECG shows normal P wave morphology and axis preceeds each QRS complex (Fig.13).

Sinus node dysfunction (SND)

a) **Sinus node pause/arrest** (Fig.14): There is lack of discharge from the SA node with no activation of the atria. ECG shows periods of absent P wave.

b) **Sinus node exit block** (Fig.15): There is delay or blocked activation of atria from SA node. ECG shows dropped P wave with (P-P interval in multiples of basic P-P interval).

c) **Tachycardia-bradycardia syndrome** (Fig.16): Severe sinus bradycardia or sinus pause is followed by tachycardia in the form of atrial fibrillation/flutter or junctional rhythm.
Sinus bradycardia (Normal P wave morphology and at 40bpm)

Sinus pause

Sinus node exit block - Dropped P wave

Tachycardia-bradycardia syndrome (Atrial flutter alternating with periods of asystole)

First degree AV block (PR interval >200msec)

Atrioventricular block

First-degree atrioventricular heart block (Fig. 17): There is delay in atrio-ventricular conduction at the level of AV node with prolongation of PR interval beyond the normal ranges for age.

Second-degree atrioventricular heart block (Fig. 18): Some atrial impulses are not conducted to the ventricles. It is classified as Mobitz type I (Wenckebach phenomena) and Mobitz type II. In Mobitz type 1 (Wenckebach) block: PR interval is progressively prolonged with each beat until a P wave is not followed by QRS complex, the cycle is constantly repeated and usually benign and the site of block is above the bundle of His. In Mobitz type 2, following a number of normal beats with no progressive prolongation...
of PR interval, a P wave is not followed by QRS and the site of block is below Bundle of His. Mobitz type 2 may progress to complete heart block.

Third-degree (complete) atrioventricular heart block (Fig.19): No P waves are conducted to ventricles. ECG shows triad of fixed P-P interval, fixed R-R interval with varying PR interval. In patients with block above the bundle of His (supra hisian) the escape rhythm is junctional with normal QRS complexes, with block below the bundle of His (infra hisian) the escape rhythm is ventricular with wide QRS complex.

Management

Acute bradycardia with a pulse and poor perfusion is managed according to the PALS algorithm. The indications for pacing by Class I – II recommendation in pediatrics is given in Box 3.

Conclusion

With newer antiarrhythmic drugs, better understanding of physiological mechanism in arrhythmia, technical advancement in radiofrequency ablation and implantable defibrillators in recent years, arrhythmias are more effectively treated.

Points to Remember

- Arrhythmias in children are not uncommon.
- Diagnosis is based on the ECG characteristics.
- Differentiation of supraventricular from ventricular tachyarrhythmias is essential.
- Acute arrhythmias should be treated in pediatric intensive care unit.
- Indications for antiarrhythmic drugs are clear cut while some may need implantable defibrillator or pacemaker.

References

CLIPPINGS

Tight Glycemic Control in Critically Ill Children. HALF-PINT Study Investigators and the PALISI Network.

Critically ill children with hyperglycemia did not benefit from tight glycemic control targeted to a blood glucose level of 80 to 110 mg per deciliter, as compared with a level of 150 to 180 mg per deciliter. Optimal target blood glucose levels in critically ill children are unknown. In the HALF-Pint randomized trial of intensive insulin therapy (IIT), a lower target blood glucose level (80 to 110 mg/dL did not reduce the number of intensive care unit-free days in critically ill children when compared with a higher target level (150 to 180 mg/dL. Mortality was nondifferent between the groups. However the rates of hypoglycemia and health care associated infections were much higher in the lower target group. These results are consistent with trials in adults and it is recommended against treatment with IIT regimens that target blood glucose levels between 80 to 110 mg/dL [4.4 to 6.1 mmol/L] in critically ill children.

ERRATUM

It is regretted that the name of author was incorrectly printed in the content. The authorship of the article should read as “Arpana Iyengar”. The error is deeply regretted.

Editorial Board
Indian Journal of Practical Pediatrics
CARDIOVASCULAR ISSUES IN SYSTEMIC CONDITIONS

*Shakuntala Prabhu
**Sumitra Venkatesh

Abstract: Systemic conditions are generally an interdisciplinary challenge in clinical practice. Heart gets directly or indirectly involved by different mechanisms. A cardiovascular history and thorough examination helps to evaluate underlying cardiac dynamics. Diagnostic methods, especially two-dimensional echocardiography is often required, which can be used for screening as well as for the detection of early stages of the disease. In view of a high degree of morbidity and mortality, clinicians in care of these patients should be equipped with knowledge and awareness of cardiac involvement to support the heart and tailor the management of the systemic illness.

Keywords: Cardiovascular issues, Systemic conditions

Heart is not just an innocent bystander and is affected in a wide range of systemic conditions. Often, cardiac involvement in systemic diseases is not well recognized, as the dominant manifestations frequently reside in other organ systems. However, cardiac involvement accounts for a serious degree of morbidity or mortality. The heart and the circulation are important targets in systemic diseases that may cause cardiac failure in the end stage of the illness or life-threatening problems due to acute cardiac events.

Cardiovascular history and examination is essential to assess cardiac dynamics. Diagnostic methods especially imaging techniques are required, which can be used for screening and for the detection of early stages of the disease. Chest X-ray may show an enlarged heart due to cardiac failure or dilatation. Blood tests for myocardial damage (cardiac enzymes - particularly troponins) and/or heart failure (including brain natriuretic peptide (BNP) are helpful. A 12-lead ECG helps to detect arrhythmias and chamber dilatation. Two-dimensional echocardiography is the most important diagnostic technique in cardiology for the detection of structural and functional disturbance and cardiac tissue injuries. The quality of echocardiography and success rate of detecting cardiac pathology in patients with primary non-cardiac problems depends on the competence and expertise of the investigator. Especially in this scenario, clinical knowledge about the influence of the systemic disease on cardiac anatomy and physiology is essential for an accurate diagnosis. Other investigations like cardiac catheterisation, MRI scan, Doppler flow studies, nuclear cardiology and cardiac scans can be carried out, if relevant information is not obtained on echocardiogram.

Cardiac involvement in systemic condition can present in many ways (Box 1). Also cardiomyopathy is common in several conditions and may be caused by diffuse myocardial ischemia due to vasculitis. Infiltration usually causes myocarditis and pericarditis.1,2 There are many systemic conditions affecting the heart. This article deals with the cardiovascular issues frequently encountered in systemic conditions like hypothyroidism, nutrition deficiencies, diphtheria, scorpion sting and chemotherapy induced cardiomyopathy.

Box 1. Systemic conditions-Cardiac manifestation

- Pericarditis
- Myocarditis or myocardial fibrosis due to myositis
- Vasculitis with rhythm and conduction disturbances
- Diastolic or systolic heart failure
- Endocardial involvement with valvular disease
- Pulmonary hypertension (secondary to concomitant lung disease or recurrent lung embolism)
- Arterial hypertension.
- Syncope

* Professor & Head,
** Assistant Professor,
Pediatrics and Pediatric Cardiology
B.J. Wadia Hospital for Children, Mumbai
Email: ssprabhu1@hotmail.com
Hypothyroidism

Hypothyroidism is one of the most common endocrine abnormalities in children. Thyroid hormone exerts direct cellular effect on almost all tissues of the body including heart which has been recognized for several decades. The cardiac effects of hypothyroidism depends on the severity and duration of the disease and can range from subtle abnormalities to overt and easily recognizable manifestations. Lack of thyroxine is known to be associated with both structural and functional alterations in the myocardium and causes dyslipidemia with increased risk of atherosclerosis.\(^3\)Septal and ventricular free wall hypertrophy are the commonest echocardiographic findings followed by pericardial effusion systolic/ diastolic dysfunction, along with the presence of prolonged PR-interval, QTc prolongation and bradycardia.\(^6\) Bradycardia and systemic hypertension is seen in severe cases, while the mild and moderate ones may have low to normal blood pressures.\(^7\) Narrow pulse pressure and slightly increased mean arterial pressure with some degree of exercise impairment are the most common findings in patients with overt hypothyroidism. Many studies have found significant correlation between raised TSH levels and serum total cholesterol and LDL cholesterol. Hypothyroidism accounts for about 2% of all cases of hyperlipidemia and is second only to diabetes mellitus as a cause of secondary hyperlipidemia.\(^8\)

Nutritional deficiencies and heart

Macronutrients and micronutrient deficiencies are very common in the Indian subcontinent due to multiple causes like poverty, malnutrition and religious practices. These deficiencies cause significant cardiac morbidity ranging from dilation of the cardiac chambers to cardiomyopathy and cardiac failure. Urban food fads of fat- laden junk foods also increase the risk of heart disease as young adults. A diet high in fat increases the risk of hypertension which in turn causes increase in left ventricular mass, cardiomyocyte hypertrophy and left ventricular dysfunction. Excessive dietary sugars (carbohydrates) expose the heart to insulin and insulin-like growth factor which can also lead to left ventricular hypertrophy and dysfunction as seen in adults with hypertension.\(^1\) A sodium rich diet can also precipitate or worsen congestive cardiac failure in borderline cases.

Specific nutrient deficiencies cause specific cardiac issues, a few of which will be covered in this discussion. These nutrients are either antioxidants or nutrients which are known to affect myocardial energy production. Endogenous antioxidants include those like zinc in superoxide dismutase or selenium in glutathione peroxidase, free radical scavengers (e.g. vitamins A, C or E) and metal chelators. Early recognition and optimization of many vitamin deficiencies helps in prevention of heart failure and cardiomyopathies.\(^2\)

Selective deficiency of thiamine, selenium and calcium can lead to cardiac failure. Vitamins A, C and E help in protection of the vasculature while Vitamin B6, B12 and folate help in reduction of homocysteine. Carnitine and co-enzyme Q help, in improving the exercise capacity in children with cardiac failure.

Hypocalcemia induced cardiomyopathy is a well-known cause of treatable cardiomyopathy that responds dramatically to calcium supplementation. Also, low levels of serum calcium is pro-arrhythmogenic with higher incidence of prolongation of QTc, torsades de pointes and ventricular fibrillations. In cases associated with hypocalcemia, Vitamin D, another important nutrient, helps in improving myocardial contractility.\(^9,10\)

Magnesium is an important mineral that helps in maintaining the sodium-potassium homeostasis mechanism in the body. Hypomagnesemia is associated with an increased incidence of ventricular ectopics and tachycardia. Magnesium deficiency also causes cardiac failure in children.\(^2\) Ventricular arrhythmia in idiopathic cardiomyopathy may at times respond to magnesium supplementation.

Zinc is another antioxidant and its deficiency causes apoptosis of the cardiomyocytes. Many cardiac medications like ACE-inhibitors and thiazide group of diuretics also increase urinary loss of zinc.

Selenium is a trace element found in small quantities in the soil. Food grown in certain parts of the world may have poor concentrations of selenium due to low content in soil. Meat and seafood have the greatest concentrations of selenium. Selenium supplementation stops the progression of the cardiac disease but does not reverse the damage. Selenium deficiency in developed nations is seen more often in the chronically ill, malnourished patients with malabsorption and those on un-supplemented total parenteral nutrition. Selenium (Se) deficiency also is encountered when nutrient-limited diets are used for patients with phenylketonuria and refractory epilepsy (ketogenic diet).

Vitamin B1 (Thiamine) is a co-enzyme for decarboxylation in the carbohydrate metabolism. Deficiency of thiamine causes high-output cardiac failure due to accumulation of lactate and pyruvate that causes...
severe vasodilation. The response to thiamine therapy is rapid and complete with no residual damage to the heart.

Vitamin B6, B12 and folate are necessary for the conversion of homocysteine to methionine and hence a deficiency of both would predispose to an early coronary artery disease (CAD). A hyperhomocysteinemia state promotes early atherosclerosis and causes ischemic attacks by various mechanisms and is best avoided by vitamin B supplementation.

Association of vitamin C deficiency with heart disease in children is unknown, but it helps significantly in those with hypertension due to its action on the cardiac vasculature as shown by multiple studies in adults. Vitamin C also enhances the benefit of vitamin E especially in those children undergoing cardiac transplant.1

Co-enzyme Q10 is an endogenous fat-soluble quinolone and an antioxidant with membrane stabilizing properties which is found in the mitochondria of myocardium, liver and kidney.

Carnitine helps in improving muscle metabolism due to its action on Kreb’s cycle and is a very useful supplementation in patients with cardiomyopathy, cardiac surgery and even myocardial infarction.

Congestive heart failure (CHF) is a systemic illness as there is chronic neurohormonal activation. Environmental factors (e.g. reduced sunlight exposure and dietary Ca2+/intake) and the treatment with diuretics and ACE-inhibitors also play an important role in this condition as previously mentioned.13 Disturbances in minerals and micronutrients are an integral feature of any paediatric illness and are likely to contribute to its progressive nature.

In recognizing the importance of a dyshomeostasis in Ca2+, Mg2+, vitamins D and B12, Zn and Se in CHF, its prevention and management will need to be addressed in everyday practice.2 Thus, patients with CHF need daily nutrient supplement in addition to their habitual diet.11

Diphtheria

Diphtheria is a toxin-mediated disease caused by Corynebacterium diphtheriae. The incidence of diphtheria has greatly reduced following introduction of vaccine in the early twentieth century, though outbreaks have been reported.

The manifestations of C. diphtheriae infection are influenced by the anatomic site of infection, the immune status of the host and the production and systemic distribution of toxin. Initial infection usually is localized and is categorized by the site of involvement.

Toxic cardiomyopathy occurs in 10%–25% of patients with respiratory diphtheria and is responsible for 50%–60% of deaths. The cardiac toxicity occurs usually during the 2nd and 3rd weeks of illness as the pharyngeal disease improves (it is a poor prognostic sign if it occurs early) or insidiously as late as in the 6th week. Tachycardia disproportionate to fever, conduction disturbances, dilated and hypertrophic cardiomyopathy, cardiac arrhythmias and heart failure are the complications noted. Temporary transvenous pacing may improve the outcome.12

Specific antitoxin is the mainstay of therapy and should be administered early based on clinical diagnosis. Antitoxin is administered as a single empirical dose of 20,000–100,000 units based on the degree of toxicity, site and size of the membrane and duration of illness.

The role of antimicrobial therapy is to halt toxin production, treat localized infection and prevent transmission of the organism to contacts. Erythromycin and penicillin are the drugs of choice.

Scorpion sting envenomation

Scorpion sting is an acute, life-threatening, rural emergency. The case fatality rates range from 3%–22% in children hospitalized for scorpion sting in India, Saudi Arabia and South Africa. There are over 80 species of scorpions in India, of which only two are of medical importance. Cardiovascular effects are particularly prominent following the stings by the species called Mesobuthustamulus (Indian red scorpion). Scorpion stings are most often accidental and may be total, partial or non-existent, depending on the envenomation by the scorpion. The venom contains various amino acids, serotonin, hyaluronidase and other enzymes. The toxin acts by opening sodium channels and inhibiting calcium dependent potassium channels, thus causing an autonomic storm that presents as vomiting, excessive salivation, sweating, hypertension, tachycardia, cold extremities, myocardial dysfunction and pulmonary edema.13

Severe vasoconstriction occurs due to the catecholamine surge and accumulation of endothelins. Hypertensive stress leading to myocyte toxicity and LV
failure and arrhythmias is common in children. Hypotension and bradycardia may be seen in the first 1-2 hours of sting due to cholinergic stimulation, but bradycardia with hypertension beyond 4 hours of the sting suggests severe LV dysfunction. The level of toxicity depends on the species and the dosage of venom to weight ratio. Symptoms are most severe within 4-5 hours after the sting and subside within 1-2 days. Pulmonary edema may occur within half hour after the sting and can present as tachypnea and refractory cough in pale – looking children with respiratory distress. At times, this can occur even when the child seems to be recovering and hence a periodic, thorough clinical examination is important in such cases. X-ray chest shows pulmonary vascular congestion with a normal cardiac silhouette and inter-lobar effusions. Echocardiography mostly shows LV systolic dysfunction but LV dilation or regional wall motion abnormalities are rare.

Prazosin forms the main stay of therapy and acts by activating the venom-inhibited potassium channels causing a decrease in the preload, after load and blood pressure. It is also a phospho-diesterase inhibitor and prevents myocardial injury. Pediatric dosage is 30 microgram/kg/dose in all with an autonomic storm, given as an emergency drug through naso-gastric tube in cases of severe vomiting. Blood pressure, pulse rate and respiration must be monitored every 30 minutes for 3 hours, every hour for next 6 hours and later every 4 hours till improvement. A repeat dose of prazosin can be given at the end of 3 hours according to clinical response and later every 6 hours till extremities are warm, dry and peripheral veins are seen easily. Diazepam is often used to keep the child calm and some may require NSAIDS for pain management. In case of pulmonary edema, diuretics forms the main stay of therapy to decrease the fluid load along with dobutamine and sodium nitroprusside or nitroglycerine. Scorpion antivenom if available should be given within 30 minutes of the sting for optimal effect.

Drugs causing cardiotoxicity

There are multiple drugs that are used for therapy in children and there has always been a pursuit of initiatives to improve their safety profile. Chemotherapy for pediatric malignancies have greatly enhanced survival rates in childhood cancers since over 4 decades now, but this has an associated increase in the long-term side-effects of these very drugs. Anthracyclines form the mainstay therapy in most childhood cancers (hematological and solid tumors). The common ones are doxorubicin, daunorubicin and epirubicin, but the mechanism by which they cause cardiac damage is still unclear. The risk factors that have been identified most certainly are higher cumulative dose and younger age. The acute manifestations are hypotension and arrhythmias, which are usually benign and resolve spontaneously. The chronic effects are postulated to cause decrease in cardiac tissue (especially left ventricular wall thickness) that causes cardiac dysfunction and cardiac failure. There are multiple studies that show subclinical cardiotoxicity in children treated with anthracyclines ranging from 0%-57%. Though congestive cardiac failure can occur at any dose, the risk increases substantially if the cumulative dose is more than 300mg/m2 and if the duration of therapy has been longer. Several studies have also shown a four times female preponderance in developing cardiotoxicity following anthracycline therapy and Lip Shultz et al have attributed this to “differences in oxidative stress, differential expression of multi-drug resistance gene and body composition”.

The other drugs with known cardiac side-effects in paediatric population are cisplatin, cytarabine, cyclophosphomide, ifosfamide and rare ones such as fluorouracil, amsacrine and tyrosine kinase inhibitors. Most case reports mention arrhythmias as the commonest side-effect of cisplatin as it decreases the levels of calcium and magnesium in blood and other rarer ones such as myocardial infarction and cerebral vascular accidents. Cytarabine affects the pericardium mainly, especially in higher doses. Cyclophosphamide therapy may be severely toxic in high doses in older patients and cause congestive cardiac failure or myocarditis usually by 2 weeks of therapy.

Radiation (especially to the mediastinum) causes pericarditis, cardiomyopathy, valvulitis, arrhythmias and coronary artery disease. Clinical presentation of pericarditis in such cases may be silent or occur with pleuritic chest pain, friction rub and dyspnea. Cardiomyopathy following thoracic radiation may be dilated, restrictive or hypertrophic with effect on diastolic function more often than systolic. Mitral and aortic valvulitis is generally seen with fibrosis but with or without calcifications. Radiation induced cardiovascular damage depends on multiple factors like duration after completion of therapy (longer the duration, more is the likelihood), volume of the heart exposed, younger age, techniques and dosage. A baseline echocardiography prior to radiation therapy is mandatory to rule out effusion due to the malignancy itself. Most studies have shown that limiting the radiation dosage to less than 25 gray does significantly decrease the risk of cardiotoxicity in children.
Most protocols now recommend two-dimensional echocardiography (2D echo) prior to and after 3 weeks of chemotherapy or radiation therapy in all cases of pediatric cancers specially with a hemoglobin of over 9g/dl and normothermia. Children on anthracycline and mediastinal radiation should have an ECG, echocardiogram and radionuclide angiocardiography (at some centers) prior to start of therapy and also monitor lipid profile, family history for early coronary disease, blood pressure, fasting glucose levels and physical activity levels on a long-term basis.

Conclusion

A wide variety of systemic conditions may affect the heart by various mechanisms like increasing metabolic demand on the heart, causing arrhythmias, affecting chambers (size and function) and layers of the heart. The true prevalence and clinical importance of cardiac abnormalities in most systemic conditions, both at the time of presentation and during evolution of the disease is difficult to comprehend from the existing literature data.

Echocardiography is the best non-invasive modality giving reliable details of cardiac involvement and is easily available and reproducible. In children, because of a narrow window of opportunity, most clinicians complement clinical assessment with point-of-care echocardiogram to detect subclinical heart involvement in these conditions to tailor the management and support the heart through the illness.

Points to Remember

- **Heart is affected in most systemic conditions of childhood.**
- **Hypothyroidism in addition to direct effect on heart, affects it indirectly by causing hyperlipidemia and atherosclerosis.**
- **Selective deficiency of thiamine, selenium and calcium can lead to cardiac failure.**
- **Cardiac involvement in diphtheria during the second and third week of illness is responsible for 50%-60% of deaths.**
- **Scorpion sting causes cardiac toxicity due to catecholamine surge.**
- **Commonest drugs causing cardiac toxicity are anthracyclines and other anti metabolites.**
- **A high index of clinical suspicion and timely evaluation to diagnose the underlying cardiovascular involvement is advised to reduce the morbidity and mortality.**

Echocardiogram is a non-invasive modality that can aid in detection of subclinical cardiac involvement in appropriate situations.

References

2. Witte/ KK, Clark AL. Chronic heart failure and multiple micronutrient supplementation: realistic hope or idealistic conjecture? Heart Fail Monit 2005; 4:123–129.

Frequency of Evidence-Based Screening for Retinopathy in Type 1 Diabetes.

In patients who have had type 1 diabetes for 5 years, current recommendations regarding screening for diabetic retinopathy include annual dilated retinal examinations to detect proliferative retinopathy or clinically significant macular edema, both of which require timely intervention to preserve vision. During 30 years of the Diabetes Control and Complications Trial (DCCT) and its longitudinal follow-up Epidemiology of Diabetes Interventions and Complications (EDIC) study, retinal photography was performed at intervals of 6 months to 4 years.

The researchers used retinal photographs from the DCCT/EDIC study to develop a rational screening frequency for retinopathy. Markov modeling was used to determine the likelihood of progression to proliferative diabetic retinopathy or clinically significant macular edema in patients with various initial retinopathy levels (no retinopathy or mild, moderate, or severe nonproliferative diabetic retinopathy). The models included recognized risk factors for progression of retinopathy.

Overall, the probability of progression to proliferative diabetic retinopathy or clinically significant macular edema was limited to approximately 5% between retinal screening examinations at 4 years among patients who had no retinopathy, 3 years among those with mild retinopathy, 6 months among those with moderate retinopathy, and 3 months among those with severe nonproliferative diabetic retinopathy. The risk of progression was also closely related to mean glycated hemoglobin levels. The risk of progression from no retinopathy to proliferative diabetic retinopathy or clinically significant macular edema was 1.0% over 5 years among patients with a glycated hemoglobin level of 6%, as compared with 4.3% over 3 years among patients with a glycated hemoglobin level of 10%. Over a 20-year period, the frequency of eye examinations was 58% lower with our practical, evidence-based schedule than with routine annual examinations, which resulted in substantial cost savings.

NEWS AND NOTES

TRY PEDICON

43rd Annual Conference of IAP – TNSC
32nd South Zone Conference
Date: 9th – 12th August 2018, Trichy

For enquiries contact
Dr.K.Senthilkumar
Try Pedicon 2018, No 7, 5th cross Ammaiappan Nagar, Vayalur Road, Trichy – 620017
Email: trypedicon2018@gmail.com Mobile: 9585525966, 9845671462
Abstract: Pediatric pulmonary hypertension (PH) is being diagnosed increasingly due to improved recognition and increased survival of sick children. Pulmonary hypertension is defined as a mean pulmonary arterial pressure greater than 25 mmHg at rest. Though there is improved understanding of pediatric PH management remains challenging. Echocardiography is the noninvasive investigation of choice for initial screening while cardiac catheterisation should be performed at diagnosis before initiation of PH directed therapy, except in critically ill children. The response to treatment in PH is variable in children and hence requires constant monitoring to titrate the treatment to the response.

Keywords: Pediatric pulmonary hypertension, Guidelines, Newer therapies

Pulmonary hypertension (PH) is defined as mean pulmonary artery pressure (mPAP) > 25 mm Hg in children above 3 months of age at sea level. The other defining criteria of PH are given in Box 1. PH in children have been associated with considerable morbidity and mortality, however with early interventional strategies, better and timely treatment the outcomes are gradually improving. There are many differences in the associations and outcome in pediatric PH compared to adult PH. In children it is associated with lung growth and development, including many prenatal and early postnatal influences.

Causes

a) Neonatal: Persistent pulmonary hypertension (PPHN), bronchopulmonary dysplasia, infections, congenital diaphragmatic hernia

Box 1. PH definition

- PH: mPAP > 25 mmHg in children > 3 mo of age at sea level
- PAH: mPAP > 25 mmHg PAWP 2 WU/m2
- IPAH or isolated PAH: PAH with no underlying disease known to be associated with PAH Referred to as HPAH with positive family or genetic evaluation
- PHVD: Broad category that includes forms of PAH but includes subjects with elevated TPG (mPAP–left atrial pressure or PAWP > 6 mmHg) or high PVRI as observed in patients with cavopulmonary anastomoses without high mPAP

Clinical presentation

Children with PH most commonly present with cyanosis but may manifest with subtle features even in the advanced stage. If IPAH is untreated, the most common presenting symptom is breathlessness and children frequently present with poor appetite, faltering growth, lethargy, tachypnea, tachycardia and irritability. Usual clinical signs are clubbing, cardiomegaly, engorged neck veins and accentuated pulmonary second sound. The severity of symptoms determines the prognosis. WHO classification of PH is given in Box 2.
1. General laboratory work: Complete blood count, platelet count, urinalysis, electrolytes, BUN, creatinine, Brain natriuretic peptide or N-terminal pro b-type natriuretic peptide (NT-proBNP), uric acid

2. Respiratory studies: Arterial blood gas, chest x-ray, chest CT, pulmonary function tests, ventilation/perfusion scan, polysomnography

4. Portal hypertension: Liver function panel, hepatitis screen, abdominal/liver ultrasound

5. Thyroid panel (TSH, free T4, total T4), CTD

6. ESR/CRP, ANA, anti-DNA, anti-cardiolipin antibodies, CH50 complement (C3, C4), ANCA, rheumatoid factor

7. HIV testing, toxins, drugs

Specific tests

The noninvasive test of choice for initial screening for PH is echocardiography. Echo is useful not only for identifying potential causes of PH but also for evaluating RV function and assessing related comorbidities. Serial echocardiograms should be performed especially in the setting of changes in therapy or clinical condition.

Cardiac catheterization is recommended before initiation of PAH-targeted therapy except in critically ill patients requiring immediate initiation of empirical therapy. Cardiac catheterization should include acute vasoreactivity testing (AVT) unless there is a specific contraindication. AVT in children is undertaken to assess the response of the pulmonary vascular bed to pulmonary-specific vasodilators.

The minimal hemodynamic change that defines a positive response to AVT for children should be considered as a \(\geq 20\% \) decrease in PAP and PVR/SVR without a decrease in cardiac output. In children with IPAH or familial PAH (isolated PVHD), the result is used to define the likelihood of response to long-term treatment with CCB therapy and for prognosis.

Treatment

Management of PH in infants with BPD begins with aggressively treating the underlying lung disease.

Box 2. WHO Classification of pulmonary hypertension (PH)

1) PAH
 a) Idiopathic
 b) Heritable: BMPR2, ALK1, ENG, SMAD9, CAV1, KCNK3
 c) Drug and toxin induced
 d) Pulmonary arterial hypertension associated with other disease (APAH): Connective tissue disorder, HIV infection, portal hypertension, CHD, Schistosomiasis
 e) Pulmonary veno-occlusive disease (PVOD) and or pulmonary capillary hemangiomatosis (PCH)

2. PH due to left-sided heart disease: LV systolic dysfunction, LV diastolic dysfunction, valvular disease, congenital/acquired left heart inflow/outflow tract obstruction and congenital cardiomyopathy

3. PH caused by lung disease or hypoxemia: Chronic obstructive pulmonary disease, interstitial lung disease, other pulmonary diseases with mixed restrictive and obstructive pattern, sleep-disordered breathing, alveolar hypoventilation syndromes, long-term exposure to high altitudes, developmental lung diseases

4. Chronic thromboembolic disease

5. PH with unclear or multifactorial mechanisms
 - Hematological disorders: Chronic hemolytic anemia, myeloproliferative disorders, splenectomy
 - Systemic disorders: Sarcoidosis, pulmonary histiocytosis, lymphangioleiomyomatosis
 - Metabolic disorders: Glycogen storage disease, Gaucher disease, thyroid disorders
 - Others: Tumor obstruction, fibrosing mediastinitis, chronic renal failure, segmental PH

Investigations and diagnosis

A complete and early diagnosis is imperative for the management of PH as severity is inversely proportional to recovery. The investigations recommended by the consensus statement on the management of pulmonary hypertension are as follows:
1. Screening for PH by echocardiogram is recommended in infants with established BPD.

2. Evaluation and treatment of lung disease, including assessments for hypoxemia, aspiration, structural airway disease and the need for changes in respiratory support, are recommended in infants with BPD and PH before initiation of PAH-targeted therapy.

3. Evaluation for long-term therapy for PH in infants with BPD should follow recommendations for all children with PH and include cardiac catheterization to diagnose disease severity and potential contributing factors such as LV diastolic dysfunction, anatomic shunts, pulmonary vein stenosis and systemic collaterals.

4. Supplemental oxygen therapy is reasonable to avoid episodic or sustained hypoxemia and with the goal of maintaining O_2 saturations between 92% and 95% in patients with established BPD and PH.

5. PAH-targeted therapy can be useful for infants with BPD and PH on optimal treatment of underlying respiratory and cardiac disease.

6. Treatment with inhaled nitrous oxide (iNO) can be effective for infants with established BPD and symptomatic PH.

7. Serial echocardiograms are recommended to monitor the response to PAH-targeted therapy in infants with BPD and PH.

Inhalational nitric oxide (NO) is the first line of treatment for children with PH in intensive care units, PPHN (persistent pulmonary hypertension) of newborns and also for post operative cases. It causes rapid fall in the pressures in pulmonary artery via the stimulation of guanylyl cyclase and hence increased production of cyclic guanylate monophosphate (cGMP) in pulmonary smooth muscle cells. It has also been seen to reduce the requirement of ECMO on early institution in neonates.

The response to treatment in PH is variable in children and hence require constant monitoring to titrate the treatment to the response and early institution of pharmacotherapy reduces the need for transplantation.

Calcium channel blockers (CCB)

CCBs should be given only to those patients who are reactive as assessed by acute vasoreactivity test (AVT) and are >1 year of age and are contraindicated in children who have not undergone or are nonresponsive to AVT and in patients with right-sided heart dysfunction because of the potential for negative inotropic effects of CCB therapy. Nifedipine and amlodipine are the commonly used CCBs.

Phosphodiesterase inhibitors

Sildenafil is the most potent agent and acts by selectively inhibiting phosphodiesterase V. American heart association (AHA) recommends its use in children with low risk for PH along with endothelial receptor antagonists. Recent research has suggested that another PDE type 5 inhibitor, vardenafil, may be more effective than sildenafil, however these are in vitro studies.

Prostacyclin inhibitors

Intravenous and subcutaneous PGI2 or its analogs should be initiated without delay for patients with higher-risk PAH. It acts by reducing PVR, inhibiting platelet aggregation, and reducing smooth muscle cell proliferation. The intravenously used agents are epoprostenol, treprostinil; inhalation agent is iloprost and oral is beraprost.

Anticoagulation (AHA recommendations)

1. Anticoagulation with warfarin may be considered in patients with IPAH/HPAH, patients with low cardiac output, those with long-term indwelling catheters and those with hypercoagulable state.

2. Targeting the therapeutic range for international normalized ratio between 1.5 and 2.0 is recommended for young children with PAH.

3. Anticoagulation should not be used in young children with PAH because of concerns for harm from hemorrhagic complications.

Combination therapies

Combination therapies are used primarily in adults. They can be added as combination or as add on therapy but are still in research stages in children.

Newer therapies

Some novel agents which can improve useful in future are Rho-kinase inhibitors: Current evidence states that activation of the small GTPase RhoA and its downstream effector Rho – associated kinase (ROCK) are important in the pathogenesis of PH.

1. Rho-kinase inhibitors
2. Vasoactive intestinal peptides
3. Estradiol derivatives
4. Apoptosis and gene therapy
Follow up

After initiation of treatment child should be followed up properly and a cardiac catheterization is recommended within 3 to 12 months after the initiation of therapy to evaluate response or with clinical worsening. The six minute walk distance (6MWD) should be used to follow exercise tolerance in pediatric PH patients of appropriate age during follow up. MRI can be useful not only as part of the diagnostic evaluation but also during follow-up to assess changes in ventricular function and chamber dimensions.

Conclusion

Advances in the pharmacological therapies have improved the outcome in pediatric PH but early diagnosis and institution of therapy is the key to modify the disease process. It also requires drug titration in the pediatric population as compared to the adults. Novel therapies under investigation may prove to be fruitful in future.

Points to Remember

• **Pulmonary hypertension in infants and children though rare is associated with significant morbidity and mortality.**
• **Targeted pulmonary vasodilator therapies have demonstrated hemodynamic and functional improvement in children.**
• **Management of pediatric PAH remains challenging as treatment decision are based mainly on results from evidence-based adult studies.**

Reference

DISASTER RELATED INJURIES - PEDIATRIC PERSPECTIVE

*Vinod H Ratageri
**Shilpa C

Abstract: India has long been susceptible to natural disasters because of its distinctive geographic and climatic conditions. Added to this, the changing demography, increasing urbanization, depletion and destruction of environmental resources, pollution, epidemics and pandemics have intensified disaster risks. Disaster exposure involves not just personal injury but also loss and adversity leading to impact on whole communities with the pediatric population being the most vulnerable. However data available on the management and helping the kids cope with disaster are meager. This article deals with the short and long term consequences of disaster related illnesses, injury and perceived needs of care especially among pediatric population and management of crush injuries.

Keywords: Disaster, Injuries, Post traumatic stress, Crush injuries.

Disaster is derived from Latin which means “ill started”. A disaster is defined as any catastrophic event that has an unexpected abrupt onset affecting the lives of many. Mcfarlane and Norris (2006) categorized disasters as events that are powerful to impact and upset the daily life of an individual. These happenings left people to be faced with damage to life or harm physical and mental wellbeing. Earthquakes, floods, cyclones, hurricanes, bombings are a few examples of major natural and manmade disasters causing great havoc on human lives.

Epidemiology

India is susceptible to natural disasters because of its distinctive geographic and climatic conditions. To add to this and make worse the changing demography, increasing urbanization, depletion and destruction of environmental resources, pollution, epidemics and pandemics have intensified disaster risks. Nearly 68% of the total landmass is liable to drought, 60% to earthquakes of various intensities, 12% to flood and river erosions and 8% to cyclones. These events threaten the country’s economic growth and manpower. However, it has been difficult to quantify the burden of disaster related injuries amongst children due to the absence of clear age cut offs and injury classification for pediatric patients.

Pediatric population are more vulnerable in disaster as they have special needs. They require help from adults to be supervised, fed and protected from harmful exposures. They are prone to rapid spread of infections and toxins. The ongoing process of growth and development also pose challenges in providing healthcare. There is a need for pediatric care providers and specialists along with the availability of pediatric equipments and medicines.

Consequences of disaster

Disasters may result in a wide array of consequences. They range from physical events like physical injury, risk to life, mental health sequelae like sadness, grief, major depression, anxiety and post traumatic stress disorder, social issues like being rendered homeless, difficulties in seeking medical aid and transportation. Norris and Wind categorized the consequences of disasters into 4 major groups (Box 1).

Box 1. Disaster consequences

1. Traumatic stressors - Comprise of dangers to life, witnessing aversive, ugly and shocking scenes
2. Loss - Bereavement (experiencing extreme despair and agony due to the death of a loved one during the event). Loss due to animate or inanimate objects
3. Ongoing adversities - Lack of shelter, food and safe drinking water.
4. Community effects - Disaster exposure involves not just personal injury but create the potential for community-wide economic, environmental, governmental, social and cultural disruptions that can influence mental health
Classification of injuries

Maintenance of accurate records of types of injuries following disasters is crucial for epidemiological purposes as well as planning of intervention programs. Despite the fact of injury registries exist there are many lacunae for e.g. no uniform injury classification system, no clear age cut offs for pediatric population leading to challenges in categorizing the types of disasters as well as evaluation of pediatric injury patterns.

First challenge is absence of an upper age limit of for pediatric patients. While some studies consider less than 14 years as a child others consider it as less than 18 years. Second challenge is the substantial dissimilarity in classifying pediatric injuries. The other challenges include marked scarcity in reporting data related to pediatric traumatic injuries and no availability of comprehensive data registries following large scale mishaps.

Jacquet GA, et al3 in their systemic review on earthquake related injuries in children classified and summarized the injuries as follows: 1) based on injury type fractures (18.1% to 55.2%), soft tissue injuries (7.6% to 70.2%) and crush injuries (6.3% to 18.7%) with special mention made to the secondary consequences of renal failure and the need for dialysis and 2) based on location - fracture of extremities (17.1% to 60.8%), head trauma (3.2% to 61%) and spinal trauma - 4.9% to 31.1%. Sever MS et al in their review on incidence of crush syndrome in the Gujarat earthquake that happened in 2001, of the 20,023 deaths that occurred, 33 of the 35 who had crush injuries being the most common. The extent of injuries is severe amongst individuals staying in and around the epicenter during an earthquake or indoors and also in those who are inside buildings (residential or commercial). If the incident occurs at night, injuries will be concentrated on pelvis, chest and legs since victims will be lying down. On the other hand if earthquakes occur during daytime, the hospital is likely to see victims with head trauma and lacerations. Earthquakes not only causes fatal and non-fatal injuries but also deleterious effects on infrastructure, communication and transportation.

Tsunamis: It is defined as a “large harbour wave” in Japanese. It is due to sudden vertical displacement of water. Aquatic earthquakes, volcanoes, landslides may also result in tsunamis. Extensive destruction and large number of deaths as a consequence follows high impact tsunamis with children being most susceptible to injuries. A large majority of deaths are attributed to drowning.

Flood: Floods are the leading cause of deaths due to natural disasters. Worldwide Asia is the most affected and India is no exception. Studies report more deaths from floods than all other disasters recorded. To mention a few, victims may suffer from hypothermia, polytrauma from falling debris. Immediate causes of death include drowning, trauma or fatal injuries and over extended time period it is from infectious disease.

Cyclones: Cyclones are characterized by inward spiraling winds that rotate about a zone of low pressure. Such storms created over the tropical oceans are known as tropical cyclones. A tropical cyclone usually originates over tropical or sub-tropical waters and rotates clockwise in the southern hemisphere and counter-clockwise in the northern hemisphere. Depending on their location and strength, tropical cyclones are referred to as hurricanes (western Atlantic/eastern Pacific), typhoons (western Pacific), and cyclones (southern Pacific/Indian Ocean).

There are many human health impact of cyclones. Death rates are high especially in developing nations and severe injuries among survivors are commonly seen. Type of morbidities include falls, blunt trauma, lacerations, drowning, asphyxiation, isolated bone and soft tissue injury and psychological consequences like continued suffering and anguish, depression, post traumatic stress disorder and psychiatric sequel. After the cyclone there may be outbreaks of infectious diseases. There will be loss of routine hygiene, sanitation, shelter and belongings with detrimental effects on heath care system and infrastructure noted.

Types of disaster

The list of major natural disasters and the common co-occurring injuries are as follows

Earthquakes: Sudden release of energy in the earth’s crusts creates seismic waves that result in earthquakes. Injuries occurring during earthquakes are many, with crush injuries being the most common. The extent of injuries is severe amongst individuals staying in and around the epicenter during an earthquake or indoors and also in those...
preparedness in the form of improvements in forecasting, early warning signs, public education on safety measures, early evacuation and shelter measures could reduce cyclone and hurricane related morbidity and mortality.13,14

Tornadoes: A tornado is a narrow, violently rotating column of air that extends from the base of a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes are the most violent of all atmospheric storms. If the victim is outdoors during a tornado he can sustain abrasions, lacerations due to flying objects set into motion by winds. Bone and soft tissue injuries occur frequently. Chances of occurrence of compound fractures are more. Often the victims end up with crush injuries as they remain indoors within buildings when hit by a tornado as they occur with little or no previous warning.

Management

Triage: Patients should be categorized by severity of injuries and treatment prioritized in terms of available resources and chances of survival.15 Airway, breathing and circulation should be assessed. The level of disability should be gauged and a secondary survey done. Patient should be transferred while stable anticipating future needs.16

Prevention of injuries and disabilities

In the repercussions of a disaster, all efforts should be focussed in helping children in a holistic manner with special emphasis on psychosocial support - a humane supportive approach. Following a natural disaster, both the relief workers and the affected population are at risk for external injuries, by the falling debris from the buildings which might have become structurally weaker. Additionally they also are at risk for suicide. In the acute aftermath of a disaster, public authorities need to take proactive lead like ensuring access to healthcare and essential needs like water and food. Following a disaster, attempts must be made to provide psychological first aid by identifying all those children who will be benefitted. To reduce their stress both short term and long term counseling should be enabled. Whenever a child is faced with disaster his/her reaction varies considerably depending upon age, exposure and assistance given by caretakers. On any occasion subjecting them to situations beyond the usual purview of human experience may lead to difficulty in perceiving and coping with the events. This may result in confusion, insecurity and emotional chaos. Children may develop symptoms of stress, grief, depression, anxiety and bereavement. Planning out how to help these children is very crucial. Enabling the children to understand and manage their feeling, teaching them coping techniques and restricting exposure to anxiety producing information are some of the ways to reduce their psychological stress. Long term needs include community based rehabilitation and rebuilding environment safely for future.17,18

Crush syndrome

It is the syndrome of traumatic rhabdomyolysis causing myoglobinuric renal failure, muscle re-perfusion involvement of muscle mass, prolonged compression (usually 4-6 hours) compromised local circulation, release of toxins triggering hypovolemic shock and hyperkalemia.19 Crush syndrome is very common in earthquake situations and can result in compartment syndrome with loss of limb as well as multi-organ failure and hyperkalemic states. First described in 1941 by Bywaters and Stead in the battle of Britain where in 4 patients with crush injury developed renal failure and died. Myoglobin was first identified as cause of renal failure in 1943. By waters and Stead used a rabbit model to identify myoglobin as a cause of renal failure.19

Rhabdomyolysis can occur due to various causes. The cellular injury in rhabdomyolysis occurs due to stretch of sarcolemmal due to compression. This causes influx of sodium, water and calcium across electrochemical gradients resulting in cell swelling and lysis which in turn causes release of toxins (myoglobin, potassium, lactate). In a child with crush syndrome renal function test (electrolytes, BUN and creatinine) and creatine kinase are done to check for renal status, hydration status and status of muscle.

Treatment is by early hydration in rhabdomyolysis. Vigorous hydration with atleast 20ml/kg/hr in children is essential. If urine output <2ml/kg/hr, consider giving mannitol 1g/kg to increase the elimination of myoglobin by the kidney. Early and aggressive hydration may not prevent loss of limbs, but may save kidneys and prevent multi-organ failure. Early fasciotomy to preserve limbs due to elevated compartment pressures and antimicrobial therapy to prevent or treat sepsis is mandatory.6,20

Complications

Crush injuries can affect the kidneys more than limbs. The common complications are, sepsis, DIC, ARDS, acute renal failure, cardiac arrhythmias, multi organ failure and tetanus.6,21
Points to Remember

- Disaster is any catastrophic event either natural or manmade with the potential to affect lives of many.
- Pediatric population being more vulnerable they are required to be supervised by adults.
- The burden of disaster related injuries amongst children is difficult to quantify.
- Disasters may result in a wide array of consequences.
- For any disaster always make a disaster preparedness plan.
- Triage and aggressive initial management could save the lives of many.
- During rehabilitation special emphasis needs to be on psychosocial support.

References

PHARMACOTHERAPY OF HEART FAILURE

*Jeeson C Unni
**Ranjit Baby Joseph

Abstract: Heart failure in children can have a wide range of etiologies that range from congenital to acquired causes and the presentation also varies in different clinical settings. Most of the guidelines in children are based on adult literature. Safety profile and drug dosages also vary according to the age and underlying pathophysiology. A systematic review of the commonly used drugs in heart failure is given in this article.

Keywords: Heart failure, Diuretics, Inotropes

Heart failure (HF) has been defined as an abnormality of cardiac structure or function leading to failure of the heart to deliver oxygen at a rate commensurate with the requirements of the metabolizing tissues, despite normal filling pressures (or only at the expense of increased filling pressures).1 When the demand is high, as in severe anemia and thyrotoxicosis, high output failure could occur and when the contractility of heart is decreased, low output failure manifests. The treatment of acute heart failure is aimed at decreasing the congestive symptoms with diuretics and increasing the contractility with positive inotropic agents. Pharmacotherapy is required for both the volume overload and pressure overload groups of heart failure but treatment of underlying defect by surgery or device closure is the primary treatment for some of these.

Drugs used in heart failure

Cardiac glycosides

Cardiac glycosides are used in the treatment of congestive cardiac failure since early 1785.2 Digoxin, the only oral inotropic drug, is a digitalis glycoside which inhibits the sodium potassium adenosine triphosphatase (Na-K-ATPase), resulting in increased intracellular calcium levels and thereby increased cardiac contractility. Inhibition of Na-K-ATPase reduces sympathetic flow from the central nervous system and reduces the renal sodium reabsorption which leads to suppression of renal renin secretion. The vagal tone is increased thereby prolonging the refractory period and slowing conduction through the sinus node and the atioventricular node.

Role of digoxin in the present day management of heart failure in children is being questioned by many clinicians due to the factors like its narrow therapeutic index, limited published data on efficacy in children and the widespread availability of newer drugs like angiotensin-converting enzyme inhibitors (ACEi) and beta blockers.3 Indications: Digoxin is indicated in heart failure associated with reduced systolic function of heart. In most cases of heart failure, digoxin is combined with a diuretic and an angiotensin converting enzyme inhibitor. Its role in heart failure secondary to left to right shunt lesions, where systolic function of the myocardium is preserved, is not well defined. Digoxin is used for slowing ventricular rate in tachyarrhythmias such as supraventricular tachycardia (SVT), atrial flutter and atrial fibrillation (AF).4,5 Digoxin is shown to decrease symptoms in patients with heart failure. However, it has not been shown to provide survival benefit in adults or in children. Lower dose may reduce the incidence of side effects and toxicity.6 In a post hoc analysis of DIG trial, higher serum digoxin levels were associated with increased mortality in men with heart failure.7 Scant data exist for digoxin therapy in children with heart failure. Utility of digoxin in heart failure secondary to volume overload of the ventricle, as seen in left to right shunt lesions, is less clear, since the myocardial contractility is normal in such cases.8

Digoxin is shown to decrease symptoms in patients with heart failure. However, it has not been shown to provide survival benefit in adults or in children. Lower dose may reduce the incidence of side effects and toxicity.6 In a post hoc analysis of DIG trial, higher serum digoxin levels were associated with increased mortality in men with heart failure.7 Scant data exist for digoxin therapy in children with heart failure. Utility of digoxin in heart failure secondary to volume overload of the ventricle, as seen in left to right shunt lesions, is less clear, since the myocardial contractility is normal in such cases.8

There are not many randomized control trials using digoxin in the management of heart failure in children. Small uncontrolled studies examining the acute hemodynamic effects of digoxin in children with heart failure due to large left-to-right shunts showed conflicting results.9,10,11 There are no data on the efficacy of digoxin in heart failure in children with LV systolic dysfunction or
valvar regurgitations and no data on long-term survival in any of these trials.

Dosage (Table I): Rapid digitalization is usually not indicated when using digoxin for heart failure except for treatment of acute tachyarrhythmias. The maintenance dose is given in twice daily doses for children under 10 years and once daily for children above 10 years. Digoxin “holiday” is generally not needed in children.\(^4\)

Monitoring: Heart rate and rhythm should be monitored. Periodic ECGs are recommended when up titrating the dose or using diuretics. Serum Ca\(^2+\), K\(^+\), renal parameters need to be monitored. If suspecting toxicity, serum digoxin levels should be measured (sample taken at least 6 hours after the dose). Toxicity is usually seen at >2 ng/ml level. Dose of digoxin should be halved when using amiodarone. Parents must be demonstrated as to how to give the exact dose. They should be alerted not to change dose on their own and to keep the digoxin bottle away from the reach of children. Parents must be explained about the symptoms of possible digitoxicity.

Side effects: As digoxin has a very narrow therapeutic index, side effects are expected. The common side effects are cardiac arrhythmias like sinus bradycardia, sinoatrial and atrioventricular blocks, atrial and nodal ectopic beats, atrial tachycardia with block and ventricular arrhythmias including ventricular tachycardia (VT). Apart from these, there can be gastrointestinal side effects like nausea, vomiting, abdominal pain and diarrhea, CNS manifestations like lethargy, confusion, disorientation, vertigo, headache, fatigue, anxiety, depression, delirium and hallucinations, endocrine or metabolic effects like hyperkalemia and ocular effects like blurred vision, haloes, yellow/green vision, diplopia, photophobia and flashing lights.\(^4\)

Contraindications: These include hypertrophic obstructive cardiomyopathy, Wolff-Parkinson-White syndrome and high-grade AV block. It needs to be used with caution in patients with renal failure, hypokalemia, myxedema, acute myocarditis, premature infants with impaired renal clearance, and co-administration with drugs inhibiting AV conduction (beta-blockers, amiodarone, verapamil, diltiazem). In these settings, dose reduction of the drug is appropriate.\(^2\)

Diuretics

Loop diuretics: They are widely used in heart failure because of the symptomatic relief from fluid overload within minutes of administration. Diuretic therapy remains the cornerstone in management of acute heart failure because of the decongestive effects as congestion is main component of heart failure. Despite being widely used, there is very limited evidence from prospective randomized studies to guide the prescription and titration of diuretics and higher doses may be actually harmful.\(^12\) Few recent randomized trials have shown that continuous infusion of loop diuretics did not offer benefit but were associated with adverse events like hyponatremia, prolonged hospital stay and increased rate of readmissions which is probably due to the limitations of congestion evaluation as well as to the deleterious effects linked to drug administration, particularly at higher dosage.\(^13\) Several diuretic agents are available but the most commonly used is furosemide.

Furosemide is a loop diuretic and is the preferred agent in heart failure due to its rapid onset of action and high efficacy with greater fluid clearance. The increasing doses have increasing efficacy and it remains effective even at low glomerular filtration rate (GFR). Furosemide is three times more potent than thiazide diuretics. Furosemide also has a venodilatory effect and increases systemic venous

<table>
<thead>
<tr>
<th>Age</th>
<th>Total digitalizing dose</th>
<th>Daily maintenance dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mcg/kg/24 hr</td>
<td>mcg/kg/24 hr</td>
</tr>
<tr>
<td></td>
<td>PO</td>
<td>IV</td>
</tr>
<tr>
<td>Premature newborn</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Full term newborn</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td><2 year</td>
<td>40-50</td>
<td>30-40</td>
</tr>
<tr>
<td>2-10 years</td>
<td>30-40</td>
<td>20-30</td>
</tr>
<tr>
<td>>10 years/ adults</td>
<td>0.75-1.5mg</td>
<td>0.5-1mg</td>
</tr>
</tbody>
</table>

PO: per oral, IV: intravenous.

\(^5\) Table I. Digoxin dose - Infants and children
capacitance, reducing preload. Furosemide is indicated in heart failure, pulmonary edema, hypertension, renal failure and for fluid overload due to other causes. When using diuretic, one must make sure that there is no hypovolemia (as may be seen in postoperative setting and in newborn). Serum Na, K⁺, Ca²⁺ and blood sugar are the parameters to be monitored.

Torsemide is also a loop diuretic similar to furosemide, but is more potent (10mg of torsemide is equivalent to 40mg of furosemide), has a higher bioavailability and a longer duration of action. In an open label study on children, torsemide was considered better than furosemide for control of heart failure. It is more expensive than furosemide.

Thiazides: These drugs inhibit the sodium–chloride transporter at the distal portion of the ascending limb of loop of Henle and the first part of the distal tubule thereby preventing maximal dilution of urine and thus increasing free water clearance and excretion of sodium and chloride through the renal tubular epithelium. They are less effective in patients with reduced glomerular filtration, as they exert their diuretic effects from the luminal side of the nephron. Although they are less potent than loop diuretics, they may work in synergy with them when a sequential segmental nephron blockade is achieved. They also decrease peripheral vascular resistance by a mechanism which at present, is not well understood, resulting in a decrease of blood pressure. Except for metolazone, thiazides are relatively milder diuretics and are rarely used in the treatment of heart failure.

Hydrochlorothiazide is the most often used drug in this category. Primary indications for thiazide diuretics are mild hypertension and edema. The dose of hydrochlorothiazide is 2mg/kg/day in two divided doses. Like furosemide, it also causes excretion of Na, K⁺ and chloride along with water. Hydrochlorothiazide is available as 12.5gm, 25mg, 50mg tab. The drug is quite inexpensive. Metolazone is ten times more potent than hydrochlorothiazide and is useful in resistant cases of hypertension and heart failure. Intermittent doses of metolazone may help to overcome diuretic resistance which may occur due to fluid overload, mesenteric congestion (inadequate absorption) and low renal blood flow. The dose is 0.2-0.4mg/kg/day in children. Electrolytes must be monitored closely.

Potassium sparing diuretics: Spironolactone is an aldosterone blocking agent, the other such drug is eplerenone. They act on the distal convoluted tubule, producing moderate diuresis with Na and chloride excretion and sparing of K⁺. Spironolactone is often used in combination with furosemide for heart failure. It promotes magnesium and potassium retention, increases uptake of myocardial norepinephrine, attenuates formation of myocardial fibrosis and decreases mortality associated with both progressive ventricular dysfunction and malignant ventricular arrhythmias. Spironolactone has been shown to improve survival in adult patients with heart failure. No such specific benefit has been shown in children, but the drug is effective. Two small observational studies in children, using spironolactone have shown benefit in controlling heart failure.

Monitor serum K⁺ and renal functions especially if renal impairment is present. There are conflicting results from studies to state that adding spironolactone to existing therapy in patients with heart failure and a preserved ejection fraction did not significantly reduce the incidence of the primary outcome. Guidelines have recommended adding spironolactone to treatment with ACE inhibitors and β blockers. A prospective observational study in Copenhagen has highlighted the danger of renal impairment and of hyperkalemia. It may be associated with more frequent adverse effects than is generally realised. Doses of other diuretics may need to be reduced and frequent laboratory monitoring is essential.

Vasodilators

Angiotensin converting enzyme inhibitors (ACEi): They decrease the adrenergic drive and block the heart failure induced activation of renin angiotensin aldosterone axis. Increased levels of aldosterone and angiotension II have been associated with poor outcome in heart failure. ACEi also increase bradykinin which has natriuretic properties. Currently ACEi therapy is recommended as the first line treatment for heart failure, when it is not secondary to an obstructive lesion and include a) heart failure due to ventricular dysfunction, b) hypertension, c) significant valvular regurgitation (even without heart failure) and d) heart failure secondary to large left to right shunts where the role of ACEi is less convincing, but is often used. ACEi are classified into 3 classes;

Class I - Captopril is the active form of the drug and is metabolized in liver,

Class II – Enalapril and ramipril: Pro-drugs which are metabolized to the active form and Class III - Lisinopril which is excreted without being metabolized by the kidney

Improvement in symptoms and survival has been shown in adults with symptomatic heart failure on ACEi. Later, ATLAS trial showed that high dose of lisinopril was
more beneficial than a low dose. Therefore, one must up titrate the dose to the maximum tolerable permissible doses for maximum benefit. There are no randomized trials in children, the trials may be considered unethical at this stage. Several small observational studies have proven the efficacy and safety of these drugs in children. There is one study showing survival benefit with ACEi in children with idiopathic dilated cardiomyopathy. ACEi have been found to be useful in valvular regurgitation and large left to right shunts, if the systemic vascular resistance is elevated at the baseline.

Captopril: It is the most often used ACE inhibitor in pediatric practice, especially in neonates and infants where enalapril may induce renal dysfunction. The starting dose is 0.1mg/kg/dose and is gradually increased to 0.5-1mg/kg/dose three times a day (increased after every 4 to 5 doses). Maximum dose is 2mg/kg/dose. BP and renal parameters should be monitored when up titrating the dose.

Enalapril: It is useful for older children. It is longer acting and given twice daily. The dose is 0.1-0.5 mg/kg/dose twice a day. The initial dose may be smaller. Monitoring is as for captopril. Ramipril and lisinopril are other ACEi and both are commonly used for hypertension. The doses for heart failure in children are not defined. Blood pressure (BP), renal parameters, serum K+ should be monitored, initially and whenever the dose is increased. In a relatively stable patient, ACE inhibitor therapy can be initiated in the outpatient department.

Angiotension receptor blockers (ARBs)

Angiotensin-converting enzyme (ACE) inhibitors and β-blockers can lower total mortality and heart failure hospitalizations by 25% to 40% across all ages, functional capacities, degrees of left ventricular dysfunction and causes. The extended 12-year study of the Studies of Left Ventricular Dysfunction Prevention and Treatment trials (X-SOLVD) demonstrated a significant benefit with a reduction of cumulative all-cause death compared with placebo (50.9% vs 56.4%).

ARBs are competitive antagonists for the angiotension II receptors. They block the cell surface receptor for angiotensin unlike ACEi, which are converting enzyme inhibitors. ARBs do not inhibit bradykinin breakdown and hence cough is much rarer. Also ARBs are not nephrotoxic. However, a meta-analysis of randomized trials in adults did not show any advantage of ARBs over ACEi. Side effects are same as for ACEi except that cough does not occur. Other drugs in this group are candesartan and valsartan. Studies in children are in progress, primarily for treatment of hypertension. A combination of ACEi and ARBs is currently not recommended in pediatric patients.

Hydralazine: It is a non ACEi peripheral vasodilator, resulting in relaxation of arterial smooth muscles. Hydralazine does not produce hyperkalemia and is safe in patients with renal impairment. It should be used in patients in whom ACEi or ARBs are not tolerated or are contraindicated.

Beta blockers

Heart failure results in activation of sympathetic nervous system and increased levels of circulating catecholamines. Chronic activation of sympathetic nervous system leads to worsening of heart failure by inducing myocardial apoptosis and fibrosis. Circulating catecholamines also induce peripheral vasoconstriction along with renal retention of salt and water. Beta blockers antagonize these deleterious effects. In addition, beta blockers also have anti arrhythmic effect.

Indications for beta blockers include mild, moderate or compensated heart failure, secondary to ventricular dysfunction (Beta blockers should not be initiated in acute decompensated heart failure), SVT and other tachyarrhythmias and hypertension.

The benefits of beta blocker therapy in adult patients with heart failure have been shown in several studies. In addition to metoprolol, carvedilol has been shown to decrease mortality and risk of clinical progression of heart failure. Carvedilol is a non-selective beta blocker which also has an anti-oxidant property. Due to its alpha blocking effect, carvedilol exerts a vasodilatory effect. It improves functional class and fractional shortening in children with ventricular dysfunction. Side effects include dizziness, hypotension and headache. The first multicentre, randomized, double blind, placebo controlled trial for carvedilol in children was recently published by Shaddy and colleagues. There was no statistically significant difference between carvedilol and placebo and the authors postulated that this may be due to unexpectedly low rate of events for patients in worsened category and that the trial may have been underpowered. Clinical analyses show that withdrawal of chronic beta blockade should be avoided when possible during hospitalization and that beta blocker therapy be initiated as soon as hemodynamic stability and a euvolemic state are achieved. This strategy may increase adherence to beta blockers after discharge and lower re hospitalization and mortality rates.
Newer drugs for heart failure

Nesiritide: It is a recombinant form of beta type natriuretic peptide (BNP). It produces vasodilatation and diuresis and is given intravenously. In adult patients with acute decompensated heart failure, Nesiritide has shown benefit, the primary side effect being hypotension. Later, two reviews which analyzed data from clinical trials, concluded that adult patients with acute heart failure who received Nesiritide, had increased mortality. There are no randomized, controlled trials for pediatric patients, but as the BNP levels are increased in children with heart failure, Nesiritide should be useful. An open trial in 30 children with heart failure demonstrated improved diuresis when Nesiritide was used. In a more recent study, 32 children received 55 Nesiritide infusions starting at 0.01mcg/kg/min and up titrated to a max of 0.03mcg/kg/min. Authors concluded that urine output improved significantly with Nesiritide. It could be given safely. The thirst decreased and NYHA class improved. Hypotension is a well-known side effect of Nesiritide and blood pressure should be carefully monitored. Its advantage over other diuretics is that electrolytes are not affected adversely.

Levosimendan: It is a calcium sensitizer and improves heart failure by prolonging the effects of calcium in the myocardium. The level of calcium in myocardium is not changed and hence incidence of arrhythmia due to calcium overload is not increased. Levosimendan has been shown to possess positive chronotropy, positive inotropy and vasodilatory effects without increasing myocardial oxygen consumption. It has also been shown to reduce circulating pro-inflammatory markers and markers of apoptosis. Several studies have shown the beneficial effect of levosimendan in adult patients with low output heart failure. It produces improvement in symptoms, increase in cardiac output and decrease in pulmonary venous pressure. The dose is 0.1-0.4mcg/kg/min as continuous intravenous infusion. Pediatric experience was reported by Namachivayam, et al in 15 children with severe heart failure refractory to conventional therapy. The drug was well tolerated and two third of patients could be weaned from catecholamine support. The ventricle function improved in those with acute heart failure, but not in those with long standing dysfunction. It is a useful addition to the armamentarium of drugs for heart failure and should be considered in cases which are refractory to conventional therapy.

Vasopeptidase inhibitors: These are a newer group of drugs which is yet to be licensed to be used in children. They act by inhibiting the two enzymes neprilysin and angiotensin converting enzyme. Omapatrilat and sampatrilat can be used as oral agents in cases of chronic congestive heart failure. Neprilysin is an enzyme which metabolizes BNP and inhibition of this causes natriuresis as a result of increased BNP levels. In a study among comparing enalapril and omapatrilat in adult patients, omapatrilat was found to reduce the risk of death and hospitalization in chronic heart failure but was not more effective than ACE inhibition alone in reducing the risk of a primary clinical event. In a randomised, double-blind, parallel trial of 573 patients with New York Heart Association (NYHA) class II-IV congestive heart failure, where omapatrilat and lisinopril on exercise tolerance and morbidity were compared, omapatrilat was found to have some advantages over lisinopril.

Conclusion

Drugs available today for treatment of cardiac failure only improve symptoms and that too, not to any degree of perfection. Despite advances in management of heart failure, the condition remains a major public-health problem, with high prevalence, poor clinical outcomes and large health-care costs. Emerging strategies for heart failure management include individualised therapy, novel approaches to diagnosis and tracking of therapeutic response, pharmacological agents aimed at new targets and cell-based and gene-based methods for cardiac regeneration. Hence, we need to recognise the type of heart failure in a given child and wisely use the available drugs.

References

NEWS AND NOTES

29th Annual Conference of Indian Society of Pediatric Nephrology
October 13-15, 2017

Pre-conference Workshop: 13 October, 2017 –
‘Critical Care Pediatric Nephrology and RRT’

Main Conference: 14-15 October, 2017
Venue: Heritage Village Resort, Manesar, Haryana.

Contact
Dr. Sidharth Kumar Sethi
Consultant, Pediatric Nephrology and Pediatric Kidney Transplantation,
Kidney and Urology Institute, Medanta,
The Medicity Hospital, Gurgaon, India.
Phone: 9868306235 E-Mail: sidsdoc@gmail.com http://www.ispncon2017.com
LAPAROSCOPY IN PEDIATRICS

*Rajamani G
**Regunandan SR
***Raghul M

Abstract: Minimally invasive surgery offers many advantages such as smaller incisions, greater surgical precision, decreased risk of infection, reduced length of stay and decreased cost of care. Considering these benefits, it ought to be the standard of care for infants and small children. In this review, recent progress in minimally invasive surgery and the challenges which can be tackled are described.

Keywords: Minimally invasive surgery, Laparoscopy, Appendicectomy, Thoracoscopy

Pediatric surgeons were among the pioneers of laparoscopic surgery in the early 1970s, but the vast potential of this “minimally invasive” approach to treat children with surgical conditions has only recently gained momentum. The earliest description of diagnostic laparoscopy was by Cortesi, et al. However, diagnostic laparoscopy was originally introduced in 1910 by the Swedish physician - Hans Christian Jacobeus who published his results from diagnostic laparoscopy and thoracoscopic procedures. Therapeutic laparoscopy was made popular following the description of laparoscopic appendicectomy by a German gynecologist - Kurt Semm in 1983 and of laparoscopic cholecystectomy by the German surgeon – Erich Muhe in 1985. Advancements in development of instrument components particularly illumination, optics, fiberoptic transmission, insufflation and video-apparatus have progressed alongside development of techniques for minimal access into the abdominal cavity. Development of pediatric laparoscopy was marked by Gans in his contribution to the development of pediatric miniature instruments in 1970. Laparoscopy offers the surgeon the option of achieving high standard surgical treatment while keeping tissue trauma to a minimum.

An increasingly sophisticated and informed patient population often requests laparoscopy over open traditional procedures. Parents frequently select surgeons based on their laparoscopic skills. Advances in pediatric anesthetic monitoring and support equipment have also made a huge contribution. The result is an increasingly wider application to the use of laparoscopy in children. Jen and Shew observed an increase in the utilization of laparoscopy for the management of appendicitis in children from 18.6% in 1999 to 52.4%. Several diagnostic and therapeutic procedures have been demonstrated to be safely and efficiently undertaken with laparoscopy with several advantages over traditional approach.

The development of 3mm and 2mm instruments has advanced the frontiers of diagnostic as well as therapeutic laparoscopy in infant and neonatal population. In the evaluation of the neonate with abdominal distension, free gas on plain abdominal radiograph in the absence of corresponding clinical signs of peritonism (a pathological condition marked by the symptoms of peritonitis without actual inflammation), laparoscopy has been used to evaluate the condition and arrive at more focused management decisions with improved outcome.

Better access, panoramic visual field, quick recovery and reduced complication rates and physiological stress response in laparoscopic surgery are potential advantages when compared to open surgery. The delicate fluid balance in infants is further compromised due to evaporation of the body fluids from exposure of abdominal contents at laparotomy. This is minimized by the laparoscopic approach. Improvement of laparoscopic equipments is ongoing to further limit any drying effect of the gas and light on abdominal viscera. The procedures commonly performed through laparoscopy are given in Box 1.

The anesthetists also face few challenges. In addition to routine preoperative optimization and intraoperative monitoring, diagnosis and treatment of effects of carboperitoneum (creation of a pneumoperitoneum by...
Indian Journal of Practical Pediatrics 2017;19(3) : 305

Box 1. Common laparoscopy procedures

Upper gastrointestinal tract

Ladd’s procedure for intestinal malrotation, pyloromyotomy, reduction of intussusceptions, intestinal duplication cyst, adhesiolysis and resection of Meckel’s diverticulum

Lower gastrointestinal tract

Appendicectomy, Laparoscopic-assisted ano-rectoplasty (LAARP), pull through for Hirschsprung’s disease

Solid intra-abdominal organs

Splenectomy, deroofing of splenic cyst, abdominal cystic masses, adrenal gland excision and cholecystectomy

Gynecology

Ovarian cystectomy, ovarian detorsion, oophorectomy and diagnostic laparoscopy for chronic abdominal pain

Urology

Laparoscopy for impalpable testis, Fowler-Stephens stage 1 orchidopexy, ligation of varicocele, pyeloplasty, heminephrectomy and nephrectomy

carbon dioxide insufflation during laparoscopic surgery) and maintenance of intra abdominal pressure (IAP) between 6-12 mm Hg are needed. Vigilant observation of the effects of carboperitoneum and tailoring the management accordingly is the key to successful management.

In advanced appendicitis, laparoscopic approach offered significant advantages with better outcomes than open approach with less wound-related complications in the authors’ experience. The ability to give a thorough peritoneal lavage offers the advantage with lesser post operative adhesions.

Laparoscopic-assisted ano-rectoplasty (LAARP) procedure has offered the advantage of placing the bowel within the muscle complex thus avoiding post operative incontinence and neuronal injury with minimal post operative complication.

Laparoscopic gubernaculum preserving orchiopexies have increased the testicular lifespan and have dramatically lessened the incidence of testicular atrophy. Further, the chances of removing a nubbin testis if at all present at the opposite side are also high (Fig.1).

Newer advancements in the field have evolved with retroperitoneoscopy for nephrectomies for non functioning kidneys, adrenal lesions and heminephrectomies for infected duplex systems. This has achieved greater advantage of absence of paralytic ileus and rapid post operative recovery due to very minimal carbon dioxide absorption.

Early thoracoscopic surgeries in children with empyema have decreased the need for open thoracotomies. Further, the morbidity with respect to hospital stay, ambulation and chest symptoms has drastically come down (Fig.2).

The main advantages of laparoscopic surgery for patients are less postoperative pain, therefore less need for postoperative analgesics, reduced wound complications, minimal scarring, a shorter hospital stay and an earlier return to normal activities including feeding, bowel movements and school.

Laparoscopic surgery in children is here to stay. But
the challenge ahead is to define more objectively the relative benefits of various laparoscopic and open techniques. Meanwhile, the potentials of endoscopic surgery should continue to be explored in appropriate settings and fetal endosurgery is one exciting example.\footnote{11}

Laparoscopic approach allows better visualization of obscure structures and areas, such as the lower esophageal sphincter complex and the small vagus nerves running along the esophageal muscle. Modern high-definition digital cameras and monitors dramatically magnify these small details and angled telescopes allow views around corners simply unavailable in open cases. When this visualization is combined with the meticulous precision possible to the well-practiced minimally invasive surgery (MIS) surgeon who knows how to “move small,” surgery may be completed with similar or superior mechanical results as open cases. Reductions in both duration of surgery and complications have been reported for pyloromyotomy, fundoplasty, tracheo-esophageal fistula repair, duodenal-atresia repair and other cases performed in infants.\footnote{12,13}

Closely related to cost and precision is speed. Not only does longer operating times cost more in terms of operating room resources, but longer time of surgery appears to increase the risk of complications. Early in any given surgeon’s experience, operating times for laparoscopic cases can exceed the expected time for open procedures. The learning curve is well documented;\footnote{14-17} however, as surgeons become more facile, operating times can drop dramatically. Information gained from MIS offers surgeons new options for resolving clinical uncertainty because the cost to the patient is diminished, the power of exploration reliably diagnoses malrotation and can provide information that contrast studies cannot. Meanwhile, the laparoscopic Ladd procedure is at least as effective in preventing volvulus as the open Ladd surgery.

Properly applied, MIS may offer better information, similar (or superior) mechanical results, more surgical options, shorter hospital stays, lower costs and risks to the patient.

References

15. Closely related to cost and precision is speed. Not only does longer operating times cost more in terms of operating room resources, but longer time of surgery appears to increase the risk of complications. Early in any given surgeon’s experience, operating times for laparoscopic cases can exceed the expected time for open procedures. The learning curve is well documented;\footnote{14-17} however, as surgeons become more facile, operating times can drop dramatically. Information gained from MIS offers surgeons new options for resolving clinical uncertainty because the cost to the patient is diminished, the power of exploration reliably diagnoses malrotation and can provide information that contrast studies cannot. Meanwhile, the laparoscopic Ladd procedure is at least as effective in preventing volvulus as the open Ladd surgery.

Conclusion

Minimally invasive surgery is more than technique and technology; it is a choice. The hospital must choose to install the right equipment, bear higher instrument attrition costs, specially train the staff and tolerate new learning curves. The surgeon must choose to add unfamiliar and uncomfortable methods to his repertoire. He must also choose the patients for whom MIS can really reduce risks: there is a demonstrable gap between “can” and “should.”
CLIPPINGS

Growth throughout childhood of children born growth restricted

Many studies that examine growth in growth-restricted children at birth do not discriminate between fetal growth restriction (FGR) and small for gestational age (SGA). These terms however are not synonymous. In SGA, stunting and increased weight gain have been reported. We do not know if this holds true for FGR. Our aim was to study postnatal growth until age 12.5 years in a cohort of children born with FGR due to early onset placental insufficiency and its relation to FGR severity.

This was a prospective cohort study, follow-up of an antenatal randomised controlled trial in two tertiary centres. Children aged 12.5 years born after FGR, with mothers who had severe early onset hypertensive pregnancy disorders (n=96). Main outcome measure considered was anthropometry at age 12.5 years in SD scores (SDS).

Mean height SDS (SD) corrected for target height was “ 0.09 (0.94), mean body mass index (BMI) SDS was 0.00 (1.16) and mean head circumference SDS was –0.37 (1.11). Catch-up growth was at fastest rate between term age and 3 months and similar for height (0.55 SDS/months) and weight (0.49 SDS/months). Neither FGR severity nor gestational age was related to height and BMI at age 12.5 years.

Children born growth restricted due to early onset placental insufficiency have height and BMI scores comparable to their age-matched peers at age 12.5 years. FGR severity was not related to height and BMI at age 12.5 years. These reassuring results differ from most studies that examine SGA children.

Potential danger of isolated platelet transfusion in patients with dengue infection.

Prophylactic platelet transfusions in stable patients with dengue fever may delay normalization of platelet counts and may actually increase the duration of hospitalization. However, the potential for harm by isolated platelet transfusions will be markedly higher when the endothelium is more activated. The following suggestions may be useful for the use of platelet transfusions in patients with dengue. First, avoid isolated platelet transfusions if possible (however, the need for platelet transfusion needs to be decided by the treating clinician in each patient, on a case by case basis). Second, if platelet transfusions are required for a patient, first infuse fresh frozen plasma/cryosupernatant (providing ADAMTS13 supplementation), then infuse platelets. The need of the hour is systematic studies to assess if these suggestions for transfusion practices translate into a reduction in multi-organ system failure and mortality.

The diagnosis of abdominal tuberculosis is often challenging given the non-specific presenting features. Very few have lung lesions in the chest x-ray. Mantoux test is usually not helpful. Radiology may provide insights into possible tuberculous etiology in abdomen, prior to invasive methods for obtaining specimens to view the bacillus or for culture.

The tubercle bacilli may enter the gastro-intestinal tract through the ingestion of infected milk or sputum. Hematogenous route or contiguous spread from neighbouring foci are also possible routes. When the mucosa is invaded, tubercles form in the lymphoid tissue of the submucosa. At this juncture ultrasound or CT abdomen are normal. In about two weeks, caseation sets in and inflammation spreads from the primary site. Spread through the deeper layers of the gut wall and onto the serosa involves the peritoneum giving rise to peritoneal tuberculosis. At this point of time, imaging can pick up ascites. Peritoneal fluid with synechiae in an otherwise normal abdomen is characteristic of tuberculosis. The synechiae enhance on contrast examination. Fig. 1 is a CT picture showing grey fluid with strands running across. The bowel seems normal. There may also be smaller, thickly septated loculations and clumped up loops matted together due to fibrous peritoneal reaction. Sometimes a group of small bowel loops are seen constantly clumped up together and CT may demonstrate a confining thick fibrous rind around the loops. This is called sclerosing encapsulating peritonitis or abdominal cocoon.

Tuberculous ulcers are superficial but cicatricial healing and accompanying endarteritis cause strictures. The commonest site of involvement is the ileocecal region. Reasons put forward are physiological stasis, increased rate of fluid and electrolyte absorption, minimal digestive activity and abundance of lymphoid tissue at this site. The frequency of proximal or distal bowel involvement is much less. The terminal ileum, ileocecal junction and the cecum are simultaneously affected in a majority of children with abdominal tuberculosis. Barium meal examination of a child in Fig. 2 and Fig. 3 shows a persistently dilated loop in the one hour and three hour films which represents hold up of barium due to luminal narrowing. In the six hour film (Fig. 4) in the same child barium has moved on into the terminal ileum which takes an upright course to join a pulled up cecum. Flocculation of the barium is also seen low in the right iliac fossa. A late film (Fig. 5) in another patient shows a classical goose neck deformity consisting...
of a mildly dilated terminal ileum going upwards to a retracted, fibrosed and narrowed cecum. While barium series only delineate the lumen of bowel, CT also reveals what is actually occurring in the wall and in the surroundings. Fig.6 shows a thickened wall of the cecum with surrounding inflammatory change in the retroperitoneal fat, seen as loss of normal hypodensity of fat. There is a mildly dilated ileal loop with enhancing wall. In Fig.7 there is a narrowed segment of bowel with thickened walls. Nodes, mesenteric and omental thickening can also be seen.

From the ulcers in the mucosa the bacilli may travel through the lymphatic channels to lymph nodes. Nodes may also be reached through the hematogenous route. Abdominal lymphadenopathy is the most common manifestation of abdominal tuberculosis. Ultrasound and CT can pick up nodes. The most commonly involved nodes are mesenteric nodes, omental nodes, nodes at the porta hepatis, along the celiac axis and peripancreatic region. Enlarged nodes are seen as round or oval structures (Fig.7). Contrast enhanced CT may reveal peripheral enhancement with hypodense centres due to caseous necrosis.

Isolated abdominal solid organ involvement is uncommon. Mode of spread is by blood. The genitourinary system is the most commonly involved, followed by liver, spleen and pancreas and is more often seen in the young adult than in children because of the long latent period. Renal involvement is in the form of papillary cavitation, fibrosis causing infundibular stenosis, abscesses and even loss of renal function.

NEWS AND NOTES

55th National Conference of Indian Academy of Pediatrics
PEDICON 2018, Nagpur, Maharashtra, India
Dates: 4th – 7th January, 2018
Venue: Eden Greenz, Kamptee Road, Nagpur

Contact
Dr. Jayant Upadhye,
Chief Organising Secretary
Upadhye Children Hospital,
Swawalambi Nagar Sq., Nagpur 440 022
Ph: 9823054536
id: jvupadhye@gmail.com

Dr Vasant Khalatkar
Chief Organising Chairperson
Khalatkar Hospital, Reshimbag,
Nagpur - 440009
Ph: 9823044438
id: vasant.khalatkar@gmail.com
LOWER GASTROINTESTINAL BLEED - A RARE CAUSE

*Sumathi Bavanandam
**Nirmala Dheivamani

Abstract: Vascular malformations (VM) are rarely seen in children and clinical manifestations depend on site involved. Labia majora is the most common site of vascular malformations of pelvic region and less common sites include rectum, vagina, uterus and bladder. We report a girl with rectal bleed secondary to vascular malformation.

Keywords: Arteriovenous malformation, Hemangioma, Rectal bleed, Children

Ten years old girl born of non-consanguineous parents presented with intermittent episodes of passing painless fresh bleeding per rectum of six months duration. There was no history of melena. She also complained of easy fatiguability and exertional dyspnea. She was anemic without any puffiness of face, pedal edema or respiratory distress at rest. Her left thigh and gluteal region were bigger than the right with discrepancy of 5 centimeters width at mid thigh level and length discrepancy of 3 centimeters when compared to right side. There was bluish skin discoloration and venous engorgement over left thigh area. External genitalia were normal. Haemic murmur was present on auscultation of the heart while other system examinations were normal. Investigations showed hemoglobin of 4.4gms/dL, total WBC count 5900 cells/mm³, P48% / L51% / E1% and platelet count 3.8 lakhs with a retic count of 5%. Peripheral smear study showed severe microcytic hypochromic anemia. Renal function tests, blood glucose, liver function tests, coagulation profile and urine routine were within normal limits. Doppler study of lower limbs showed absent great saphenous vein, dilated superficial veins with varicosities in left lower limb. She was hemodynamically stabilised with packed red cell transfusions. MRI abdomen with pelvis and thigh showed lobulated unencapsulated lesion in subcutaneous and intermediate plane of left saccrococcygeal region along sacral plexus in the posterior aspect of pelvis involving left gluteal muscles, posterior compartment of left thigh up to the level of left knee joint consistent with venous vascular malformation without any identifiable feeders or draining veins (Fig.1). Upper GI endoscopy was normal. Colonoscopy showed bluish vascular lesions of varying sizes in proximal and distal colon. She was advised hematins. As endovenous laser therapy is not available in our centre, she was referred for therapeutic intervention to a specialised gastro intestinal centre but the patient was lost for follow up.

Discussion

Vascular malformations (VMs) as a cause of lower gastrointestinal bleed is less common in children. The outcome depends upon the site and severity of the bleed. VMs can occur as focal or diffuse lesions and are classified by flow characteristics and channel content. VMs are best categorized according to combined biological and radiological classification proposed by Mulliken, Glowacki in 1982 and later by Jackson.1,2

Slow-flow vascular malformations namely venous and lymphatic malformations are typically treated by
sclerotherapy whereas fast-flow arteriovenous malformations often require embolizations. Some VMs, such as VMs of the rectum or uterus, are best managed surgically. VM can be diagnosed by physical examination when the skin is involved as in this child or with increased pulsatility, bruit or thrill. Typically, these anomalies are caused by germ line or somatic mutations in the TIE2 gene, which is involved in signalling between the endothelial and the mesenchymal cells during vasculogenesis and angiogenesis.3,4

The most common site involved in the female pelvis is the perineum; especially the labia majora.5 Less commonly, the rectal wall, vagina, uterus or bladder may be affected. Children with pelvic VM need follow up for puberty related and renal problems. Some of the syndromes like Klippel-Trenaunay syndrome and Parkes Weber syndrome typically affect a lower extremity and the adjacent pelvis. Classical features of Klippel-Trenaunay syndrome is a congenital disorder classically characterized by findings of a port-wine stain (nevus flammeus), abnormal venous structures (such as varicosities and slow-flow venous malformations) and osseous and soft-tissue hypertrophy and lymphatic abnormalities. Our child had venous malformation with limb hypertrophy with intermittent bleeding per rectum. Diffuse venous malformations of the lower extremities with extension into the perineum and buttoc are typically associated with painful swelling and patients are at increased risk for venous thrombosis.6 The clinical workup often requires tests like angiography, blood pool scan, magnetic resonance imaging, doppler studies and endo-sonography. MRI study shows increased signal intensity on T2 weighted images and venous malformations are generally septated lesions with intermediate to decreased signal intensity on T1-weighted images. Hemorrhage or thrombosis or high protein content phleboliths in venous channels can be appreciated.7,8 Some of the treatment modalities include endovenous laser, percutaneous or endoscopic sclerosant injection or surgery.9 Summarising, VMs can be focal or diffuse with varied clinical manifestations requiring characterization of the specific type of VM based on clinical and imaging findings which is essential for management.

References
October 2017 will take your breath away! We are delighted to announce RESPICON 2017 - the 29th Annual IAP (Indian Academy of Pediatrics) Respiratory Conference in association with the 3rd APPS (Asian Pediatric Pulmonology Society) meet to be held at Bengaluru, India from the 26th to 31st October, 2017.

With a confluence of international speakers, interesting scientific sessions & expert interactions, the RESPICON 2017 conference will bring together the best minds & lungs. There is a lot to imbibe from experienced General Practioners, Pediatric Pulmonologists & Allied Health Care Professionals.

Looking forward to your participation in Respicon 2017 - Asia's biggest Pediatric Respiratory Conference. We promise that the conference will be breath taking!

Scientific Programme Highlights

Back to Basics Understanding Lung Physiology & its Clinical Relevance • Neonatal Lung Disorders – How far we’ve come? • Pneumonias – Are we waging a war with Drug Resistant Bugs?

Pediatric Respiratory Medicine Sleep Disorders – Its not just OSA • Asthma – Research & the Reality • Non Invasive Ventilation – We need to know more • Bronchoscopy – Are we ready for Interventional procedures?

Allergy Nasal or Bronchial – Where does the story begin? • Immunotherapy – Is it working? • Skin Prick Tests – Busting Myths!

Lung & Systemic Disorders Immunodeficiencies – The Lung becomes the Battlefield • HIV & the lung – Hitting the Right Bugs!

Public Lecture - Optimising Lung health in Children – Time to Think!

2 day NIV workshop – from pioneering experts from Europe • Bronchoscopy – Basics to Interventional • Allergy – SPT & more!

Pediatric HERMES exams (Diploma in Pediatric Respiratory Medicine (ERS)) for the first time in India

International Faculty Dr Gary Connett (UK) • Dr Maya Ramgopal (US) • Dr Manu Sundaram (UK) • Dr Satish Rao (UK) • Dr Marti Pons Odena (Spain) • Dr Alberto Medina (Spain) • Dr Mahesh Babu (Singapore) • Dr Anne Goh (Singapore) • Dr Daniel Ng (Hong Kong) • Prof Rujipat Samransamruajkit (Thailand) • Prof Kun-ling Shen (China) • Prof Wen-jue Soong (Taiwan) • Dr Alfred Tam (Hong Kong) • Dr Oon-hoe Teoh (Singapore) • Dr Rina Triasih (Indonesia) • Prof Zhi-fei Xu (China) • Dr Michael Ku (UK) • Dr Thagiyarajan (UK)

National Faculty Prof SK Kabra • Prof Varinder Singh • Prof Meenu Singh • Dr Vijayshekaran • Dr Gowrishankar & more

Registrations
www.respicon2017.com

Enquiries
info@respicon2017.com
2. No Toxin.
5. Emanate Low Carbon Foot Print.

PROTECTS FROM ITCHING, ALLERGY, RASHES

SPECIAL PREEMIE COLLECTION
Available for Premature Babies
weight under 1 Kg, 1 to 1.5kg and 1.5 to 2.0kg

Mfd & Marketed by:
ANANDI ENTERPRISES, Tirupur - 641607, Tamilnadu, INDIA.
Customer care: Mail: customercare@ecotelate.com | Phone: +91 421 2222403 | www.ecotelate.com

* NO MEDICINAL CLAIMS ARE MADE ON THE FABRICS IN ANY WAYS
** THERE ARE NO GUARANTEE OF COLORS IN ANYWAYS

for online order www.ecotelate.com

MADE IN INDIA
INDIAN JOURNAL OF PRACTICAL PEDIATRICS

SUBSCRIPTION TARIFF

JOURNAL OFFICE
1A, Block II, Krsna Apartments,
50, Halls Road, Egmore,
Chennai 600 008, Tamilnadu, India.
Phone: +91-44-28190032, 42052900.
Email: ijpp_iap@rediffmail.com

Subscription [ONE] year
for [TEN] years

Official Journal of the Indian Academy of Pediatrics
A quarterly medical journal committed to practical pediatric problems and management update

For office use
Ref. No.
Cash / DD for Rs.
DD No.
Receipt No. & Date

Name...

Address..

..

City .. State

..

Pin Phone (R) .. (O)..

Mobile Email ..

Designation Qualification..

I am enclosing a DD No. dated drawn on

favoring Indian Journal of Practical Pediatrics for Rs.

Subscription rate

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual</td>
<td>Annual</td>
<td>Rs.500/-</td>
</tr>
<tr>
<td></td>
<td>Ten Years</td>
<td>Rs.5000/-</td>
</tr>
<tr>
<td>Institution</td>
<td>Annual</td>
<td>Rs.600/-</td>
</tr>
<tr>
<td></td>
<td>Ten Years</td>
<td>Rs.6000/-</td>
</tr>
<tr>
<td>Foreign</td>
<td>Annual</td>
<td>US $ 65/-</td>
</tr>
</tbody>
</table>

(Subscription period is between January and December only)

Send your subscription, only by crossed demand draft, drawn in favour of INDIAN JOURNAL OF PRACTICAL PEDIATRICS, payable at Chennai and mail to Dr. N.C. GOWRISHANKAR, Editor-in-Chief, 1A, Block II, Krsna Apartments, 50, Halls Road, Egmore, Chennai 600 008, Tamilnadu, India.